

Protection Class: public

Charge Control C User Guide

chargebyte GmbH

2024-01-08 14:21:33

Charge Control C User Guide

Protection Class: public

Contents

1 Revision .. 5

2 Safety Notes .. 10

3 Device Overview ... 11

3.1 Product Features .. 11

3.2 Product Description .. 11

3.3 OCPP features ... 11

3.4 Timings ... 38

4 HMI ... 39

4.1 LEDs ... 39

4.2 Switches ... 40

5 Mechanical Dimensions ... 42

6 Mounting ... 43

7 Interfaces .. 44

7.1 Ethernet .. 44

7.2 USB .. 44

7.3 EIA-485 ... 44

7.4 Mains PLC .. 50

7.5 Control Pilot / Proximity Pilot .. 52

7.6 Locking motors ... 52

7.7 Relays ... 53

7.8 1-Wire ... 53

7.9 Digital Input & Output ... 53

7.10 4-wire fan .. 54

8 Board Connections .. 55

8.1 X1 - mains... 55

8.2 X2 - DC in ... 56

8.3 X3 - fan ... 56

8.4 X4 - 1-Wire.. 56

8.5 X5 - Control and Proximity pilot .. 56

8.6 X6 - Ethernet - USB .. 56

8.7 X7 - EIA-485 1 .. 56

8.8 X8 - EIA-485 2 / CAN ... 57

Charge Control C User Guide

3

8.9 X9 / X10 - Locking Motor .. 57

8.10 X11 - Digital In .. 60

8.11 X12 - Digital In and Out ... 60

8.12 X13 - Digital Out .. 60

8.13 X14 - Relays ... 61

8.14 JP1 - Bootmode Jumper ... 61

8.15 JP2 - Debug UART ... 61

8.16 JP3 - Expansion Port .. 61

8.17 Mating Connectors .. 61

9 Use Cases ... 63

9.1 IEC 61851 AC charging .. 63

9.2 ISO 15118 AC charging .. 65

10 Programming ... 69

10.1 Firmware Update Customization and Signing .. 69

10.2 Board customization with USB ... 71

10.3 Recovery of customer.json ... 73

11 Firmware upgrade ... 74

11.1 Partitioning .. 74

11.2 Update via USB .. 75

11.3 Update via SSH and SFTP ... 75

11.4 Update via SSH or Serial Console and HTTP or FTP .. 76

11.5 Update via MQTT API ... 76

11.6 Update via OCPP .. 79

11.7 Support for casync based Firmware Updates... 79

11.8 Rollback mechanism ... 80

12 Charging Stack Initialization .. 83

13 Device Access ... 83

13.1 Debug UART ... 83

13.2 SSH ... 83

13.3 Website ... 83

14 Configuration ... 84

14.1 Charging Stack Configuration Files .. 84

14.2 Network Configuration .. 102

14.3 OCPP Root Certificate Authority Keys / Certificates .. 105

15 MQTT and Mosquitto Documentation .. 106

15.1 MQTT Interface and Configuration ... 106

Charge Control C User Guide

4

15.2 MQTT Service Discovery .. 106

15.3 Charge status information ... 107

15.4 EVSEProcessing ... 109

15.5 MQTT Topics .. 110

15.6 Programming example for subscribing and publishing topics 131

15.7 Physical value type ... 134

15.8 Basic SECC configuration... 134

15.9 Stop charging and error shutdown on EVSE side .. 134

15.10 Stop charging and error shutdown indication on EV side ... 134

15.11 Renegotiation process .. 135

15.12 Pausing and resuming of a charging session ... 135

15.13 Internal error behavior & safe state .. 135

15.14 Emergency alarm .. 135

15.15 RCD monitoring and testing .. 136

15.16 Current limits for basic AC charging ... 142

15.17 RFID authorization .. 147

15.18 Sharing one RFID reader between multiple Charge Control C 148

15.19 Ventilation Control ... 148

15.20 Phase Count Switching between 3- and 1-phase Charging 153

15.21 Fake High-Level DC Charging Mode .. 156

15.22 Best practice ... 160

16 Order Information .. 162

17 Device Marking .. 163

18 Certifications ... 164

19 Contact ... 166

Charge Control C User Guide

 5

Protection Class: public

1 Revision

Revisio
n

Release
Date

Valid
from
Software
Version

Changes

8 January 8,
2024

3.5.0 added RCD test feature in sections MQTT,
configuration and OCPP

3.3.0 added a section for customer.json recovery under
"Programming"

OCPP configuration key AuthorizeRemoteTxRequests
is now switchable, the description was adapted
accordingly

phase count switching: synchronized minimum allowed
switch delay to hardware specification

extended section about limitations of OCPP
implementation

corrected wire size specification for connectors in
chapter 8.17

7 August 29,
2023

3.2.0 mentioned support of exFAT filesystem

added hint about meter install direction regarding
consumption/import and generation/export

added non-functional RS-485 MCU as error cause to
OCPP status notifications

reworked fake DC HLC session section and updated
interfaces/configuration elements

 2.2.0 added new OCPP feature: transmission of the public
key of Eichrecht meters via DataTransfer and new
configuration keys

added slightly more detailed description of the OCPP
HeartbeatInterval since the implementation now
accepts the value of zero from the backend

added mention/explanation of timestamps in OCPP
StatusNotification

6 March 3,
2023

2.1.0 added new section "OCPP Measurand Support" and
updated related sections

fixed OCPP parameter defaults regarding new
measurands

refined description of rcd_monitor/polarity

refined section current limits for basic AC charging, in
particular TOPIC_GLOBAL_DYN_CURRENT_LIMIT

added OCPP section "FTP and Path Names"

fixed formatting in the table of peripheral device defaults

added new column to OCPP configuration which
explains when changes apply

added clarification that customer installed root CA
certificates are kept/migrated during firmware update,
added warning for older firmwares

add retain column to MQTT topics of "Fake high level
DC charging mode"

mentioned support and added schematics for Scame
200.23261BS, Scame 200.23261BP, Scame
200.23261BL

 1.1.6 improved description of customer.json key
"ports[0]/user_authentication key"

added behavior of Soft Reset to OCPP limitations

added new section "Fake high level DC charging mode"

added proximity errors to OCPP StatusNotification

Charge Control C User Guide

 6

Protection Class: public

Revisio
n

Release
Date

Valid
from
Software
Version

Changes

added support for ChargingProfilePurpose TxProfile
and adjusted MaxChargingProfilesInstalled

added persistence errors to OCPP StatusNotification

extended OCPP TriggerMessage implementation

September
21, 2022

1.1.0

added a section for board customization with USB
under the section "Programming"

added a section for firmware update customization and
signing under the section "Programming"

added new OCPP configuration option
ftpTryTLSUpgrade

added support for Socomec Countis E03/04 meters

meter implementation is now disabled by default

 August 24,
2022

1.0.9 documented new option "basic+fake_highlevel_dc" for
configuration parameter "charging_type"

added new OCPP configuration option
calibrationLawFormat

 August 16,
2022

1.0.8 adjusted directory name in section "Update via SSH
and SFTP" and added hint to remove the update file
after installation

added support for Elecnova DDS1946-2P/2M and
DTS1946-4P/4M meters

added feedback type configuration for ventilation and
added "none" option for contactor and ventilation

updated URI of the Board Support Package Github
repository to the chargebyte address

 July 19,
2022

1.0.7 OCPP: documented new TriggerMessage
implementations

mentioned Yocto SDK in chapter Programming, refined
section Advices/Requirements for Customer
Applications (EIA-485) and added programming
example

added support for Eastron SDM230 meters

added support for Carlo Gavazzi EM300/ET300 and
EM100/ET100 series compatible meters

changed value of ports[0]/pp/cable_current_limit
configuration

 May 20,
2022

1.0.6

documented new MQTT topic
TOPIC_GLOBAL_TIME_SET_STATUS

OCPP: documented new PersistenceError

OCPP: mentioned current limitation about
StatusNotification with status
SuspendedEV/SuspendedEVSE

OCPP: removed 32 bit limitation of transaction IDs

OCPP: added chapter about local data storage

fixed customer.json parameter for Phoenix Contact
EEM-350-D-MCB

added support for BZR Bauer/SunSpec compatible
meters

added new OCPP configuration options
bootNotificationOnReconnect and
StopTransactionSignatureFormat

6 February
15, 2022

1.0.4 added note regarding the maximum size of json values
in the customer.json configuration

added phase count switching chapter

Charge Control C User Guide

 7

Protection Class: public

Revisio
n

Release
Date

Valid
from
Software
Version

Changes

added SCAME-200.23260BS to possible locking motors

updated TOPIC_RFID_AUTHORIZEREQ to
TOPIC_RFID_AUTHORIZATION_REQUEST

added board pin description/clarify signal names for
onboard relays

updated Figures to latest HW revision:
Mechanical drawing of Charge Control C
Switches on Charge Control CConnectors of Charge
Control C

added support for Iskra WM3M4 & WM3M4C meters

added new OCPP configuration options
allowTxWithInvalidTime and useAsTimeSource

5 November
29, 2021

0.9.13 corrected dimensions of the mechanical drawing

added a table of supported peripherals in the USB
section and added a restriction note for the Huawei
E3372 internet dongle

table Configuration Software Parameter customer.json:
new configuration parameters "charging_type",
"hlc_protocols"

added backend qualification against Vector vCharM

added column for software version information into
revision table

changed order code information

added section for casync firmware updates and clarified
related points

added definition port[]/failsafe_current_limit of the
customer.json configuration

added section for Charge Point initiated generic
DataTransfer

added explanation for MQTT topic
TOPIC_EVSE_BASIC_OFFERED_CURRENT_LIMIT in
section Current limits for basic AC charging

added topic
TOPIC_EVSE_BASIC_PHYSICAL_CURRENT_LIMIT

extended status notification with error cause, impact
and how to solve

added additional parameters for RFID Modbus support

added support for SMART Technologies ID MCR Legic
RFID reader

clarified Geya recloser model type

added support for Eastron SDM630 meter

added support for ABB EV3 meter

restructured EIA-485 section (i.e. added sections about
default Modbus communication parameters and
supported electricity meter measurands etc.)

added support for client-side WebSocket ping

added hint that dynamic current limits should be
published as 'retained'

changed
topics TOPIC_EVSE_BASIC_MAXCURRENTLIMIT,
TOPIC_GLOBAL_DYN_CURRENT_LIMIT,
TOPIC_EVSE_BASIC_OFFERED_CURRENT_LIMIT,
TOPIC_CP_DUTY_CYCLE and
TOPIC_CHARGE_PWM_STATUS to floating point
representation

Charge Control C User Guide

 8

Protection Class: public

Revisio
n

Release
Date

Valid
from
Software
Version

Changes

4 January
27, 2021

 added use cases for the ventilation control

reworked charge port explanation in section "MQTT and
Mosquitto Documentation" and added "port0/" prefix in
the MQTT topic definition section

updated GetDiagnostics feature and limitation
description with newly supported upload protocols

updated table "CP State Information" and added
SHRT_MIN explanation in section "Charge status
information" regarding the initialization of the QCA7000

added ChangeAvailability behavior to OCPP limitations

added definition of a customer.json config parameter to
configure the ventilation control mode and described
MQTT topics of the ventilation control

extended meter error behavior

added hint regarding alternative mating connector
suppliers and different "coding noses"

added hint where customer specific network
configuration files have to be placed

listed new Phoenix Contact device as supported
electrical meter

added section on additional customer availability

3

September
22, 2020

 added additional note for the OCPP ReaderFailure in
section OCPP StatusNotification

added topic definition TOPIC_OCPP_ONLINE in
section MQTT Topics

added Huawei E3372 to supported USB dongle list

added explanation of the general behavior of the board
during firmware update in section Firmware Upgrade

added explanation for MQTT topic
TOPIC_GLOBAL_VERSION_CHARGING_SOFTWAR
E in section MQTT Topics

added explanation for MQTT topic
TOPIC_GLOBAL_DYN_CURRENT_LIMIT in section
Current limits for basic AC charging

added note that RFID is now optional

added limitations of SetChargingProfile

added section RFID authorization

added section sharing RFID reader (incl. relevant config
parameter)

added section Partitioning to Firmware Upgrade

updated mains powerline fallback network configuration
description

2 May 12,
2020

 refined wording in section X8

added section MQTT Service Discovery

set hint to export gpios to use in userspace

table Configuration Parameter leds.json: new LED
behavior conditions “failure” and “deactivated”

table Configuration Hardware Parameter customer.json:
new plug lock type “INTRAMCO-603205”

table Configuration Software Parameter customer.json:
new configuration parameter

Charge Control C User Guide

 9

Protection Class: public

Revisio
n

Release
Date

Valid
from
Software
Version

Changes

“digital_input_threshold_voltage”,
“rfid_stop_transaction”, “force_wake_up”,
“wake_up_after_timeout”, “emergency_alarm/polarity”,
“user_authentication”; adjusted configuration parameter
“evse_id”

section OCPP Features: added server side WebSocket
Ping Pong and FirmwareManagement support

added section OCPP configuration

section Basic SECC configuration: removed basic
SECC configuration table

added section which describes software part for the
relays, locking motors and the 4 wire PWM fan

added pairing instructions for mains PLC

section Digital Input & Output: clarified behavior list
belongs to status LED

reworked SW development sections

restructured network related stuff to fit Yocto based
image

added instructions how to use USB internet dongle

removed currently not implemented MQTT topics

added instructions to export GPIO

added locking motor logic information

added mounting section

added section Mating Connectors

mentioned new support for more electricity meters

mentioned new support for RCD recloser

added section current limits

mentioned has.to.be certification

added timings section

added data transfer section

listed imitations of OCPP offline operation

added RFID information

removed note about RCD & authorization key

1 February
20, 2019

 initial release

Thank you very much for your trust. We are happy that you have chosen our Charge Control
platform to operate your eMobility charging solution. This User Guide will help you to understand
all features of our product and configure them properly to fit your and your customer’s
requirements best.

Charge Control C User Guide

 10

Protection Class: public

2 Safety Notes

IMPORTANT: Read the following safety instruction carefully and clearly prior to the assembly and
use of the device. Please keep these safety instructions for future reference.

• The installation and assembly may only be carried out by a qualified electrician!

• This device, which is supplied with mains power, has to be secured by means of
a max. B6A circuit breaker. In case of a multi-phase connection, such a circuit breaker
has to be provided for each connected outer conductor. These circuit breakers are to be
installed directly next to each other.

• WARNING! This device is connected to mains power and hazardous voltages which are
not covered. Hazardous voltages must be covered inside the charging station to prevent
electrical shocks.

• Attention! Make sure that the device is not exposed to heat sources which may lead to
overheating. Charge Control C can be damaged in case of overheating.

• Attention! The device may only be connected in the range of overvoltage category 3 or
lower. Operating Charge Control C in a higher category can damage the device.

• Attention! Ensure adequate ventilation at the site of installation. Charge Control C can
be damaged in case of overheating.

• Attention! Do not operate the device in supply networks which do not comply with the
specifications on the type plate. Operating Charge Control C in networks not compatible
with the specifications on the type plate can damage the device.

• Attention! The device may only be installed in dry areas. Exposing Charge Control C to
wetness can damage the device.

• This device is designed for installation on DIN rails which provide fire protection as per
DIN EN 60950-1.

Charge Control C User Guide

 11

Protection Class: public

3 Device Overview

3.1 Product Features

• future-proof technology: ARM Cortex-A7 @ 800 MHz, DDR3, eMMC

• up to 6x digital general-purpose inputs

• up to 6x digital general-purpose outputs

• 4-Wire pulse width modulation (PWM) fan interface

• 10/100 Mbit/s Ethernet

• USB

• rotary switch coded maximum charging current

• debug LEDs

• up to 2x EIA-485

• CAN

• 2x Motor Driver

• 1-Wire Interface

• mains switching relays with sense feedback (only 1 Charging socket supported)

• ISO 15118 compliant control and proximity pilot interface

• HomePlug Green PHY™ on mains

• HomePlug Green PHY™ on control pilot

• filtered mains output

• OCPP 1.6J

• MQTT

Availability of the interfaces depends on the actual variant - see the product datasheet for more
details.

3.2 Product Description

Charge Control C is an IEC 61851 and ISO 15118 (CCS) compliant charging controller, born to
beat in every kind of electric AC vehicle charging station. It is capable of the ISO 15118 control
and proximity pilot signals as well as the PWM charging signal, conform to IEC 61851. It can
directly control actuators like locking motors, contactors and ventilation. With its amount of
general-purpose IO, it can be connected to a variety of periphery. It comes with the standard
interfaces to be connected to electric meters, RFID devices and different kinds of actuators and
sensors. Charge Control C is currently available in three different hardware variants (Charge
Control C 100, 200 and 300) that are suitable for different complexities of charging stations.

3.3 OCPP features

Charge Control C supports OCPP according to the OCPP 1.6J Specification (JSON over
WebSocket) with server and client side WebSocket Ping Pong. Currently to use all OCPP features
a supported RFID reader and a meter must be connected.

From OCPP’s Smart Charging profile the Charge Control C implements the commands
ClearChargingProfile and SetChargingProfile only for ChargePointMaxProfile &

TxProfile. In order to reduce eMMC wearout the ChargePointMaxProfile will be stored

persistently after some delay. TxProfile will be stored in RAM.

Charge Control C User Guide

 12

Protection Class: public

In case a running transaction is interrupted (e.g. by a power loss on the charging station), this
transaction will be terminated after reconnecting to the Central System. For the rare case that the
meter has a malfunction in this situation, the charge point will use a saved meter reading which
is at least from the start of the transaction.

The OCPP command GetDiagnostics currently supports the following upload protocols: FTP,

FTPS, HTTP, HTTPS (using method POST).

Supported OCPP messages:

Charge point initiated

Authorize

BootNotification

DiagnosticStatusNotification

FirmwareStatusNotififcation

HeartBeat

MeterValues

StartTransaction

StatusNotification

StopTransaction

Central system initiated

ChangeAvailability

ChangeConfiguration

ClearCache

ClearChargingProfile

DataTransfer

GetConfiguration

GetDiagnostics

GetLocalListVersion

RemoteStartTransaction

RemoteStopTransaction

Reset

SendLocalList

SetChargingProfile

UnlockConnector

UpdateFirmware
Table 1 Supported OCPP messages

3.3.1 Limitations of the OCPP implementation

Currently the following limitations apply:

• Currently for SendLocalList only the updateType Full is implemented.

• Only a limited set of measurands listed in the OCPP 1.6 standard is supported. See
section "OCPP Measurand Support" for details.

• Only one connector is supported currently.

• The parentId handling is not supported yet.

• Empty idTags are not supported and will be rejected.

• Charging profiles in a RemoteStartTransaction are ignored.

• SetChargingProfile only supports two charging profiles with the chargingRateUnit =

A , chargingProfileKind = Relative and chargingProfilePurpose =

ChargePointMaxProfile or TxProfile

• SetChargingProfile does not support charging schedules or stacking.

• SetChargingProfile does not support chargingProfilePurpose =
TxDefaultProfile

Charge Control C User Guide

 13

Protection Class: public

• ChangeAvailability schedules the change to Inoperative in case an EV is present

on the connector (instead of a transaction is running), but any attempt to start a new
transaction will be rejected.

• Parameters startTime and stopTime in GetDiagnostics are ignored.

• HTTP redirection during WebSocket handshake is not supported.

• StatusNotifications currently report charge point status SuspendedEV and

SuspendedEVSE as Charging.

• TriggerMessage is implemented for BootNotification, Heartbeat and

StatusNotification, yet not for the other MessageTrigger types. Therefore, this

feature profile is not reported via SupportedFeatureProfiles.

• Reset of type Soft behaves like a Hard Reset.

• In case a online transaction is rejected as Invalid by the backend, then there no

Finishing StatusNotification will be sent.

• There is no guarantee that the application works beyond year 2038.

• Since the ISO 8601 standard is quite comprehensive, the implementation focuses on the
most commonly used representation and only accepts timestamps of the following format:
YYYY-MM-DDTHH:mm:ss.SSSZ (everything beyond the dot is optional)

• The transactionId provided by the CSMS via StartTransaction must always be

unique (even the id tag is not accepted)

3.3.2 Limitations of the OCPP offline operation

• If a reboot occurs while offline, the intermediate meter values which were measured while
offline are not retained. Only the start and end readings are forwarded to the Central
System when back online.

• The Charge Point cannot charge offline until it has registered successfully with its
configured Central System URI at least once.

• If the Charge Control C does not have a valid system time, offline charging is possible,
but the offline transactions are not forwarded to the Central System when back online,
due to the invalidity of their timestamps. This also applies to meter values acquired during
that time.

• A firmware update started while offline will be delayed until a connection to the Central
System is re-established.

• No StatusNotification about already resolved fault states while offline will be forwarded to
the Central System when back online.

• Locally authorized Transaction persistence is limited to 336 entries.

3.3.3 OCPP connection behavior

OCPP 1.6J uses WebSockets (over HTTP/HTTPS) to connect client and server. These provide
persistent bi-directional connections.

Should the connection fail or get disconnected, the Charge Point tries to reconnect to the Central
System. In case the Central System URI has been changed either through configuration
parameter or MQTT topic, the local Transaction database will be erased. Previously handled
offline Transactions will not be recoverable.

To observe the state of idle connections, the Charge Point supports the use of WebSocket pings.
In addition to the OCPP Heartbeat message, pings and their corresponding pong answers can
ensure that an existing connection is stable. If enabled, the Charge Point sends WebSocket pings
in the given intervals. Should a corresponding pong in reply to the ping not arrive within the
configured timeout, the Charge Point goes into offline mode and closes the WebSocket
connection, before trying to reconnect.

Charge Control C User Guide

 14

Protection Class: public

The ping interval and timeout can be configured using customer.json as shown below, and via
ChangeConfiguration. By default, WebSocket ping is disabled (interval '0'). Note that WebSocket
ping and pong impose additional network traffic on the communication channel to the Central
System, so the interval should be chosen wisely. Also note that a too small timeout when using
high-latency connections may lead to premature disconnects.

Dedicated configuration in customer.json:

Parameter Description Type Default

ocpp/WebSocketPingInterval The interval, in seconds, between
WebSocket pings. The client ping
feature is disabled if this key is not
available or is set to '0'.

Integer
(non-
negative)

0

ocpp/webSocketPingTimeout The timeout, in seconds, after which
the connection is considered offline if
a WebSocket pong in response to a
ping is not received.

Integer
(positive)

120

Table 2 WebSocket ping configuration in customer.json

Charge Control C User Guide

 15

Protection Class: public

3.3.4 OCPP StatusNotification

In order to limit the rate of StatusNotifications, there is a minimum delay of 10 seconds between two StatusNotifications. StatusNotifications will include a
timestamp in case the charge point has a valid time source. If present, the timestamp does not mark the time the event occurred but only the time the
message has been sent. In case multiple errors exist, only the error with the highest prio is reported to the backend. Charge Control C implements the
following error codes for a StatusNotification:

ChargePointErrorCode vendorErrorCode Prio

PowerSwitchFailure 1 (highest)

ConnectorLockFailure PlugLockMotorCapNotCharged 2

ConnectorLockFailure PlugLockMotorUnexpectedOpen 3

ConnectorLockFailure PlugLockMotorUnexpectedClose 4

ConnectorLockFailure PlugLockCannotLock 5

ConnectorLockFailure PlugLockCannotUnlock 6

PowerMeterFailure CommunicationError 7

PowerMeterFailure InternalError 8

PowerMeterFailure IdleMeterError 9

PowerMeterFailure ActiveMeterError 10

ReaderFailure 11

GroundFailure SpuriousRcdError 12

GroundFailure RcdTestError 12

GroundFailure RcdGroundFailure 12

OtherError EmergencyShutdown 13

OtherError RcdRecloserFailure 14

OtherError PersistenceOpenFailed 15

OtherError PersistenceUnlinkDenied 15

OtherError PersistenceReadOnly 15

OtherError PersistenceInvalidType 15

OtherError PersistenceCountError 15

OtherError PersistenceClearError 15

OtherError PersistenceNoInsertRowId 15

OtherError PersistencePrepareFailed 15

OtherError PersistenceUpdateFailed 15

OtherError PersistenceDropFailed 15

OtherError PersistenceTransactionFailed 15

OtherError PersistenceCreateFailed 15

Charge Control C User Guide

 16

Protection Class: public

ChargePointErrorCode vendorErrorCode Prio

OtherError PersistenceInsertFailed 15

OtherError PersistenceDeleteFailed 15

OtherError PersistenceTooManyTransactions 15

OtherError PersistenceFinalizeFailed 15

LocalListConflict 16 (lowest)

OtherError ProximityNoCable

OtherError ProximityInvalid

OtherError ProximityChanged
Table 3 OCPP StatusNotification

3.3.4.1 PowerSwitchFailure

Description contactor feedback doesn't match expected state

Affected ConnectorId >= 1

MQTT condition contactor/error = 1

Error cause • contactor feedback misconfigured

• contactor broken/welded

Impact • charging interrupted / not possible

• plug lock unlocked

• CP duty cycle is set to 0%

• may still hazardous voltage on cable/connector

How to solve remotely • verify the configured value of "ports[0]/contactor/feedback_type" in customer.json with EVSE

How to solve on-site • check contactor feedback

• replace contactor

3.3.4.2 ConnectorLockFailure (vendorErrorCode = PlugLockMotorCapNotCharged)

Description capacitor for plug lock motor isn't charged within expected time

Affected ConnectorId >= 1

MQTT condition plug_lock/permanent_failure = PlugLockMotorCapNotCharged

Error cause • capacitor on Charge Control board is broken

• power supply output voltage is not okay

Impact • plug lock doesn't work as expected

• CP duty cycle is set to 100%

• charging not possible

How to solve on-site • check EVSE plug lock motor & wires

• check power supply output voltage to be at least 12 V

Charge Control C User Guide

 17

Protection Class: public

• replace Charge Control board

3.3.4.3 ConnectorLockFailure (vendorErrorCode = PlugLockMotorUnexpectedOpen)

Description plug lock feedback does return open while it should be close

Affected ConnectorId >= 1

MQTT condition plug_lock/permanent_failure = PlugLockMotorUnexpectedOpen

Error cause • wrong motor configured

• mechanical penetration of outlet/inserted EV plug

Impact • CP duty cycle is set to 100%

• charging is interrupted

How to solve remotely • verify the configured value of "ports[0]/plug_lock/type" in customer.json with used socket / motor

How to solve on-site • check EVSE plug lock & wires

3.3.4.4 ConnectorLockFailure (vendorErrorCode = PlugLockMotorUnexpectedClose)

Description plug lock feedback does return close while it should be open

Affected ConnectorId >= 1

MQTT condition plug_lock/permanent_failure = PlugLockMotorUnexpectedClose

Error cause • wrong motor configured

• mechanical penetration of outlet/inserted EV plug

Impact • EVSE plug lock doesn't work as expected

• charging not possible

How to solve remotely • verify the configured value of "ports[0]/plug_lock/type" in customer.json with used socket / motor

How to solve on-site • check EV plug

• check EVSE plug lock & wires

3.3.4.5 ConnectorLockFailure (vendorErrorCode = PlugLockCannotLock)

Description plug lock feedback doesn't return lock state after driving

Affected ConnectorId >= 1

MQTT condition plug_lock/permanent_failure = PlugLockCannotLock

Error cause • wrong motor configured

• damaged EV plug prevent locking

• EVSE plug lock damaged or stuck

Impact • EVSE plug lock doesn't work as expected

• CP duty cycle is set to 100%

• charging not possible

How to solve remotely • try to send OCPP UnlockConnector

Charge Control C User Guide

 18

Protection Class: public

• verify the configured value of "ports[0]/plug_lock/type" in customer.json with used socket / motor

How to solve on-site • check EV plug

• check EVSE plug lock & wires

3.3.4.6 ConnectorLockFailure (vendorErrorCode = PlugLockCannotUnlock)

Description plug lock feedback doesn't return lock state after driving

Affected ConnectorId >= 1

MQTT condition plug_lock/permanent_failure = PlugLockCannotUnlock

Error cause • wrong motor configured

• damaged plug prevent unlocking

• EVSE plug lock damaged or stuck

Impact • EVSE plug lock doesn't work as expected

• unplug not possible

How to solve remotely • try to send OCPP UnlockConnector

• verify the configured value of "ports[0]/plug_lock/type" in customer.json with used socket / motor

How to solve on-site • check EV plug

• check EVSE plug lock & wires

3.3.4.7 PowerMeterFailure (vendorErrorCode = CommunicationError)

Description power meter doesn't reply to requests

Affected ConnectorId >= 1

MQTT condition metering/meter/available = 0

Error cause • meter misconfigured

• incorrect RS-485 bus termination

• mixing incompatible protocols on the same bus

• power meter broken

• connection to power meter interrupted

• interferences on bus

Impact • charging not possible

• OCPP transaction stop delayed

How to solve remotely • verify all configured values below "ports[0]/meter" in customer.json with used meter

How to solve on-site • check RS-485 bus termination

• separate incompatible protocols on different busses

• check power meter

• check power meter connection

Charge Control C User Guide

 19

Protection Class: public

3.3.4.8 PowerMeterFailure (vendorErrorCode = InternalError)

Description internal error during meter handling

Affected ConnectorId >= 1

Error cause • power meter broken

• power meter firmware bug

Impact • charging not possible

How to solve remotely • try to send OCPP Reset

• check configuration

How to solve on-site • check power meter

• check power meter connection

3.3.4.9 PowerMeterFailure (vendorErrorCode = IdleMeterError)

Description power meter error during idle state

Affected ConnectorId >= 1

Error cause • power meter broken

• power meter firmware bug

• power outtageon meter

Impact • charging not possible

How to solve remotely • try to send OCPP Reset

• check configuration

How to solve on-site • check power meter

• check power meter connection

3.3.4.10 PowerMeterFailure (vendorErrorCode = ActiveMeterError)

Description power meter error during active state

Affected ConnectorId >= 1

Error cause • power meter broken

• power meter firmware bug

• power outtage meter

• RS-485 MCU on CC C not functional

Impact • charging not possible

How to solve remotely • try to send OCPP Reset

• check configuration

How to solve on-site • check power meter

• check power meter connection

• replace Charge Control board

Charge Control C User Guide

 20

Protection Class: public

3.3.4.11 ReaderFailure

Description RFID reader doesn't reply to requests (applies only when RFID is enabled)

Affected ConnectorId >= 1

MQTT condition rfid/available = 0

Error cause • RFID reader misconfigured

• incorrect RS-485 bus termination

• RFID reader broken

• connection to RFID reader interrupted

• interferences on bus

• RS-485 MCU on CC C not functional

Impact • ongoing charging isn't interrupted

• charging session cannot be started/stopped via RFID

• new charging session can only be started via RemoteStartTransaction

How to solve remotely • verify all configured values below "ports[0]/rfid" in customer.json with used RFID reader

How to solve on-site • check RS-485 bus termination

• check RFID reader

• check RFID reader connection

• replace Charge Control board

3.3.4.12 GroundFailure (vendorErrorCode =SpuriousRcdError)

Description RCD tripped when charging station not in charging or testing

Affected ConnectorId >= 1

MQTT condition rcd/error ="SpuriosRcdError"

Error cause • RCD feedback connection broken

• RCD misfunction

• unexpected residual direct current

• polarity of RCD feedback inverted

• RCD misconfigured

Impact • CP duty cycle is set to 0%

• charging not possible

• plug lock unlocked and prevented from locking

How to solve remotely • verify all configured values of "ports[0]/rcd_monitor" in customer.json with EVSE

How to solve on-site • check EVSE installation & wiring

• check RCD

• restart EVSE

Charge Control C User Guide

 21

Protection Class: public

3.3.4.13 GroundFailure (vendorErrorCode =RcdTestError)

Description RCD tripped during RCD test

Affected ConnectorId >= 1

MQTT condition rcd/error = "RcdTestError"

Error cause • RCD feedback or test connection broken

• RCD misfunction during RCD test

• polarity of RCD feedback or test inverted

• RCD misconfigured

Impact • CP duty cycle is set to 100% when EV connected

• pluglock keep closed until EV is disconnected

• charging not possible

• CP duty cycle is set to 0% when EV is disconnected

• plug lock unlocked and prevented from locking when EV is disconnected

How to solve remotely • verify all configured values of "ports[0]/rcd_monitor" in customer.json with EVSE

How to solve on-site • check EVSE installation & wiring

• check RCD

• replace RCD

3.3.4.14 GroundFailure (vendorErrorCode =RcdGroundFailure)

Description RCD tripped during charging session

Affected ConnectorId >= 1

MQTT condition rcd/error = "RcdGroundFailure"

Error cause • Residual direct current occurred

• RCD feedback connection broken

• RCD misfunction

• RCD misconfigured

Impact • CP duty cycle is set to 100%

• plug lock keep closed until EV is disconnected

• charging is interrupted / not possible

• plug lock unlocked when EV is disconnected

How to solve remotely • verify all configured values of "ports[0]/rcd_monitor" in customer.json with EVSE

How to solve on-site • Disconnect EV

• check RCD

• check EVSE installation & wiring

Charge Control C User Guide

 22

Protection Class: public

3.3.4.15 OtherError (vendorErrorCode = EmergencyShutdown)

Description Emergency shutdown has been asserted

Affected ConnectorId >= 0

MQTT condition emergency_shutdown = 1

Error cause • user asserted emergency shutdown

• polarity of emergency switch inverted

Impact • CP duty cycle is set to 0%

• charging is interrupted / not possible

• plug lock unlocked

How to solve remotely • verify the configured value of "ports[0]/emergency_alarm" in customer.json with EVSE

How to solve on-site • check EVSE installation & wiring

3.3.4.16 OtherError (vendorErrorCode = RcdRecloserFailure)

Description RCD recloser doesn't reply to requests

Affected ConnectorId >= 1

MQTT condition rcd/recloser/error = 1

Error cause • RCD recloser misconfigured

• incorrect RS-485 bus termination

• mixing incompatible protocols on the same bus

• RCD recloser broken

• connection to RCD recloser interrupted

• interferences on bus

• RS-485 MCU on CC C not functional

Impact • ongoing charging isn't interrupted

How to solve remotely • verify all configured values of "ports[0]/recloser" in customer.json with used RCD recloser

How to solve on-site • check RS-485 bus termination

• separate incompatible protocols on different busses

• check RCD recloser

• check RCD recloser connection

• replace Charge Control board

3.3.4.17 OtherError (vendorErrorCode = PersistenceOpenFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

Charge Control C User Guide

 23

Protection Class: public

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.18 OtherError (vendorErrorCode = PersistenceUnlinkDenied)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.19 OtherError (vendorErrorCode = PersistenceReadOnly)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.20 OtherError (vendorErrorCode = PersistenceInvalidType)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

Charge Control C User Guide

 24

Protection Class: public

3.3.4.21 OtherError (vendorErrorCode = PersistenceCountError)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.22 OtherError (vendorErrorCode = PersistenceClearError)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.23 OtherError (vendorErrorCode = PersistenceNoInsertRowId)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

• free space on internal eMMC storage exhausted

Impact • charging is interrupted / not possible

• on-going transactions might be lost

• transactions not yet transferred/commited to to backend might be lost

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

Charge Control C User Guide

 25

Protection Class: public

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.24 OtherError (vendorErrorCode = PersistencePrepareFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

Impact • charging is interrupted / not possible

• on-going transactions might be lost

• transactions not yet transferred/commited to to backend might be lost

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.25 OtherError (vendorErrorCode = PersistenceUpdateFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

• free space on internal eMMC storage exhausted

• transaction id provided by backend not unique

Impact • charging is interrupted / not possible

• on-going transactions might be lost

• transactions not yet transferred/commited to to backend might be lost

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.26 OtherError (vendorErrorCode = PersistenceDropFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

Charge Control C User Guide

 26

Protection Class: public

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.27 OtherError (vendorErrorCode = PersistenceTransactionFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

• free space on internal eMMC storage exhausted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.28 OtherError (vendorErrorCode = PersistenceCreateFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

• free space on internal eMMC storage exhausted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.29 OtherError (vendorErrorCode = PersistenceInsertFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Charge Control C User Guide

 27

Protection Class: public

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

• free space on internal eMMC storage exhausted

• transaction id provided by backend not unique

Impact • charging is interrupted / not possible

• on-going transactions might be lost

• transactions not yet transferred/commited to to backend might be lost

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• check free space on /srv filesystem

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.30 OtherError (vendorErrorCode = PersistenceDeleteFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

• filesystem on internal eMMC storage was corrupted

Impact • charging is not possible

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.31 OtherError (vendorErrorCode = PersistenceTooManyTransactions)

Description Maximum of offline transactions reached

Affected ConnectorId >= 0

Error cause • maximum of offline transactions reached

Impact • charging is not possible

How to solve remotely • try to send OCPP Reset

How to solve on-site • check/repair internet connection

3.3.4.32 OtherError (vendorErrorCode = PersistenceFinalizeFailed)

Description Local database subsystem reported an error

Affected ConnectorId >= 0

Error cause • internal database was corrupted

Charge Control C User Guide

 28

Protection Class: public

• filesystem on internal eMMC storage was corrupted

Impact • charging is interrupted / not possible

• on-going transactions might be lost

• transactions not yet transferred/commited to to backend might be lost

How to solve remotely • gather diagnostics data, contact vendor and forward collected diagnostics for remote analysis

• try to send OCPP Reset

How to solve on-site • check/repair internal filesystem on eMMC

• manually delete database file /var/lib/ocppd/transactions.db and reboot

3.3.4.33 LocalListConflict

Description Authorize.Conf mismatch Local auth list

Affected ConnectorId == 0

Error cause • Local auth list out of sync

Impact • charging not possible

How to solve remotely • update OCPP local auth list

3.3.4.34 ProximityNoCable

Description Proximity pilot not available

Affected ConnectorId >=1

MQTT condition session/proximity_error = ProximityNoCable

Error cause • EV plug damaged

• EVSE socket damaged

• EVSE wiring damaged

• board malfunction due electronic issues

Impact • CP duty cyle is set to 100%

• if in charging:
o charging is interrupted
o plug lock remains locked

• if not in charging:
o charging not possible
o plug lock remains unlocked

How to solve remotely • inform user about possible charging cable issue and try different cable

How to solve on-site • check EVSE installation & wiring & board

• check EV charging cable

• check EVSE plug lock & wires

Charge Control C User Guide

 29

Protection Class: public

3.3.4.35 ProximityInvalid

Description Invalid proximity pilot detected

Affected ConnectorId >=1

MQTT condition session/proximity_error = ProximityInvalid

Error cause • EV plug damaged

• EVSE socket damaged

• EVSE wiring damaged

• board malfunction due electronic issues

Impact • CP duty cyle is set to 100%

• if in charging:
o charging is interrupted
o plug lock remains locked

• if not in charging:
o charging not possible
o plug lock remains unlocked

How to solve remotely • inform user about possible charging cable issue and try different cable

How to solve on-site • check EVSE installation & wiring & board

• check EV charging cable

• check EVSE plug lock & wires

3.3.4.36 ProximityChanged

Description proximity pilot changed during charge

Affected ConnectorId >=1

MQTT condition session/proximity_error = ProximityChanged

Error cause • EV plug damaged

• EVSE socket damaged

• EVSE wiring damaged

• board malfunction due electronic issues

Impact • charging continue with reduced current limit until EV disconnected

How to solve remotely • inform user about possible charging cable issue and try different cable

How to solve on-site • check EVSE installation & wiring & board

• check EV charging cable

• check EVSE plug lock & wires

Charge Control C User Guide

 30

Protection Class: public

3.3.5 Availability

In addition to the control of Availability via OCPP, the availability of the charging station can be controlled with an MQTT topic. This external control is
noted as "customer availability" in the table below. Note that, if the backend has set the charging station to "inoperative", the customer availability cannot
force it to "operative".

Backend availability Customer availability Actual (resulting) availability

inoperative operative inoperative

inoperative inoperative inoperative

operative operative operative

operative inoperative inoperative
Table 4 Availability matrix

The following are the MQTT topics used to externally observe and control the availability.

Topic Subscribe/Publish Type Retain Unit Remarks

port0/ci/availability/target publishable String Yes - Contains one of the following strings to signal the additional customer
availability: operative, inoperative.

port0/availability/actual subscribable-only String Yes Contains one of the following strings to signal the overall, resulting
availability: operative, inoperative.

Table 5 Availability topics

Charge Control C User Guide

 31

Protection Class: public

3.3.6 OCPP Measurand Support

The OCPP 1.6 standard defines a number of measurands which could be reported to the central
system using MeterValues.req and/or StopTransaction.req messages.

The standard also allows some optional properties to describe in detail at which point the
corresponding measurand was obtained.

The Charge Control C implementation for example does not use the property location, which

means that the default location "Outlet" as defined by the standard should be used for
interpretation.

Each measurand can also be tagged with an optional property phase. Here the Charge Control
C implementation differentiates between two use-cases: it runs in a single-phase or in a three-
phase charging station. In a single-phase system the phase property is never used, that means
that only the overall measurands are provided and available. In a three-phase system, also the
phase-specific measurands might be available. However, this depends on the actually used
electricity meter, its capabilities and the state of the current implementation.

Implemented measurands are listed in the following table.

Measurand Description

Voltage In a three-phase system, the measurands are available with
the phase property set to Lx-N, e.g. as Voltage.L1-N.

In a three-phase system, no overall Voltage is available.

In a single-phase system, only the overall Voltage is

available.

Frequency Only the overall Frequency is supported for both, single-

and three-phase systems.

Current.Import In a three-phase system, the measurands are available with
the phase property set to Lx, e.g. as

Current.Import.L1.

In a three-phase system, an overall Current.Import is

only available in case the electricity meter provides such a
reading - the charging stack does not calculate it itself if not
provided by the meter.
In a single-phase system, only the overall Current is

available.

Power.Active.Import In a three-phase system, the measurands are available with
the phase property set to Lx, e.g. as

Power.Active.Import.L1.

In a three-phase system, an overall
Power.Active.Import is usually available since nearly

each electricity meter provide such a reading.
In a single-phase system, only the overall
Power.Active.Import is available.

Energy.Active.Import.Register For both, single- and three-phase systems, only the overall
Energy.Active.Import.Register is supported since

most three-phase meters do not implement dedicated
phase-specific counter registers.

Current.Offered In a three-phase system, the measurands are available with
the phase property set to Lx, e.g. as

Current.Offered.L1.

The offered current depends on the currently active current
limits due to e.g. cabling, load balancing etc.

Charge Control C User Guide

 32

Protection Class: public

Measurand Description

In a three-phase system, an overall Current.Offered is

calculated by the charging stack as the sum of the individual
offered currents on each phase. Note, that this sum might
vary depending on the actual system state, e.g. when phase
count switching is enabled and in effect.
In a single-phase system, only the overall
Current.Offered is available.

Power.Offered For both, single- and three-phase systems, only an overall
Power.Offered is calcuated by the charging stack as the

product of the multiplication of Current.Offered (i.e. the

overall total current) and the configured nominal voltage (see
customer.json).

3.3.7 OCPP configuration

Charge Control C supports the following configuration parameters. Except for
HeartbeatInterval, all writeable parameters are stored in the customer.json.

As noted in the column "Changes apply", it depends on the specific parameter when it takes
effect. Immediately means at this point, that the new value is used as soon as the charging stack
uses it during the usual workflow.

Example: "useAsTimeSource" is effectly used when the next OCPP message "BootNotification"
or "Heartbeat" is exchanged, but it does not mean, that setting this value results automatically in
an adjusted clock on the charging station. The behavior of the other parameters is similar.

Parameter Acce
ss

Default Changes
apply

Vend
or
specif
ic

AllowOfflineTxForUnknownId R/W false Immediat
ely

allowTxWithInvalidTime R/W false Immediat
ely

X

AuthorizationCacheEnabled R/W true After
reboot

AuthorizeRemoteTxRequests R/W false Immediat
ely

bootNotificationOnReconnect R/W false Immediat
ely

X

calibrationLawFormat R/W ocmf,plain Next
transacti
on

X

CentralSystemURI R/W After
reboot

X

ChargeProfileMaxStackLevel R 0 -

ChargingScheduleAllowedCharging
RateUnit

R Current -

ChargingScheduleMaxPeriods R 1 -

ClockAlignedDataInterval R/W 0 After
reboot

ConnectionTimeOut R/W 60 Immediat
ely

ConnectorPhaseRotation R unknown -

ftpTryTLSUpgrade R false - X

GetConfigurationMaxKeys R 10 -

HeartbeatInterval R/W 600 Immediat
ely

Charge Control C User Guide

 33

Protection Class: public

Parameter Acce
ss

Default Changes
apply

Vend
or
specif
ic

LocalAuthListEnabled R/W true After
reboot

LocalAuthListMaxLength R 10000 -

LocalAuthorizeOffline R/W false Immediat
ely

LocalPreAuthorize R/W true Immediat
ely

MaxChargingProfilesInstalled R 2 -

MeterValuesAlignedData R/W [] Next
transacti
on

MeterValuesAlignedDataMaxLengt
h

R 27 -

MeterValuesSampledData R/W [Energy.Active.Import.R
egister]

Next
transacti
on

MeterValuesSampledDataMaxLeng
th

R 27 -

MeterValueSampleInterval R/W 30 Next
transacti
on

Meter1PublicKey R - unset - - X

NumberOfConnectors R 1 -

ResetRetries R 0 -

SendLocalListMaxLength R 10000 -

sendMeterPublicKeyOnBootNotific
ation

R/W true Immediat
ely

X

StopTransactionOnEVSideDisconn
ect

R true -

StopTransactionOnInvalidId R/W true Immediat
ely

StopTransactionSignatureFormat R MR -

StopTxnAlignedData R/W [] Next
transacti
on

StopTxnAlignedDataMaxLength R 27 -

StopTxnSampledData R/W [] Next
transacti
on

StopTxnSampledDataMaxLength R 27 -

SupportedFeatureProfiles R Core,
FirmwareManagement,
LocalAuthListManageme
nt

-

SupportedFileTransferProtocols R FTP, FTPS, HTTP,
HTTPS

-

TransactionMessageAttempts R/W 3 After
reboot

TransactionMessageRetryInterval R/W 30 After
reboot

UnlockConnectorOnEVSideDiscon
nect

R true -

useAsTimeSource R/W true Immediat
ely

X

Charge Control C User Guide

 34

Protection Class: public

Parameter Acce
ss

Default Changes
apply

Vend
or
specif
ic

vendorId R com.in-
tech.smartcharging

- X

WebSocketPingInterval R/W 0 Immediat
ely

webSocketPingTimeout R/W 120 Immediat
ely

X

Table 6 OCPP configuration

Description of HeartbeatInterval

As mentioned, the HeartbeatInterval configuration value is special. It is not stored in the

customer.json since it is always sent with the BootNotification.conf message.

However, OCPP 1.6 allows to send a value of zero. Quote from the specification:

If that interval value is zero, the Charge Point chooses a waiting interval on
its own, in a way that avoids flooding the Central System with requests.

The Charge Control C implementation chooses the value of 10 minutes in this case.

Description of Meter1PublicKey

In case of an electrical meter with Eichrecht support, the configuration key Meter1PublicKey

contains the ASN.1 encoded public key of the meter as hex-encoded string if the meter supports
reading it. Otherwise, i.e. in case the meter does not support reading the public key, it contains
an empty string (zero length). If the electrical meter has no support for Eichrecht, then this
configuration key is unset.

Example content for Eichrecht case (wrapped for better readability):

3059301306072a8648ce3d020106082a8648ce3d030107034200043865f715c2

8598e21598e37da6e5db4e97c7501d9db9228ddbc8ae9a5aee705572d9da78e2

31378dcc1435dfce5e9b30cc5b8f3a016773205791cbf7be78e23f

Example openssl dump (long hex-string left out for better readability):

$ echo "<hexstring see above>" | xxd -r -p | openssl asn1parse -in - -

inform DER -dump -i

 0:d=0 hl=2 l= 89 cons: SEQUENCE

 2:d=1 hl=2 l= 19 cons: SEQUENCE

 4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey

 13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1

 23:d=1 hl=2 l= 66 prim: BIT STRING

 0000 - 00 04 38 65 f7 15 c2 85-98 e2 15 98 e3 7d a6 e5

..8e.........}..

 0010 - db 4e 97 c7 50 1d 9d b9-22 8d db c8 ae 9a 5a ee

.N..P...".....Z.

 0020 - 70 55 72 d9 da 78 e2 31-37 8d cc 14 35 df ce 5e

pUr..x.17...5..^

 0030 - 9b 30 cc 5b 8f 3a 01 67-73 20 57 91 cb f7 be 78 .0.[.:.gs

W....x

 0040 - e2 3f .?

3.3.8 Generic OCPP DataTransfer

The Generic OCPP DataTransfer interface provides a transparent channel from the MQTT
interface to the Central System and vice versa. It operates on both directions, both with Central
System initiated DataTransfer and Charge Point initiated DataTransfer.

Charge Control C User Guide

 35

Protection Class: public

3.3.8.1 Central System initiated

 MQTT Topic payloads for general synchronous
interface from Central System

Direction Central System → Charge Point

Request

MessageTypeNumber (Call) 2

UniqueID string of up to 36 characters

Action DataTransfer

Payload Object <vendorId>, <messageId>, <data>

Confirm

MessageTypeNumber
(CallResult)

3

UniqueID string of 36 characters

Payload Object <status>, <data>
Table 7 MQTT Topic payloads for general synchronous interface from Central System

Note: It is recommended to encode the data with Base64.

Name MQTT topic

complete request ocpp/data_transfer_from_cs/request

complete confirm ocpp/data_transfer_from_cs/confirm
Table 8 MQTT topics

Dedicated configuration in customer.json:

Parameter Description Type Default

ocpp/csDataTransfers[]/vendorId specifies the vendorId of a
dataTransfer from the central
system

String

ocpp/csDataTransfers[]/messageId specifies the optional
messageId of a dataTransfer
from the central system

String

ocpp/csDataTransfers[]/confirmTimeout specifies the timeout of
dataTransfer confirm on
MQTT interface in seconds

Integer
(1 .. 60)

1

Table 9 Dedicated configuration in customer.json

In order to use the generic DataTransfer interface the customer application needs to:

• subscribe to the request topic

• process JSON data from the request topic

• publish (no retain) the whole DataTransfer confirm as JSON to the confirm MQTT topic

o UniqueID in confirm must be identical to the request

3.3.8.2 Charge Point initiated

 MQTT Topic payloads for general synchronous
interface from Charge Point

Direction Charge Point → Central System

Request

MessageTypeNumber (Call) 2

UniqueID string of up to 36 characters

Action DataTransfer

Payload Object <vendorId>, <messageId>, <data>

Confirm

MessageTypeNumber (CallResult /
CallError)

3 / 4

UniqueID string of 36 characters

Payload Object <status>, <data>
Table 10 MQTT Topic payload for general synchronous interface from Charge Point

Charge Control C User Guide

 36

Protection Class: public

Name MQTT topic

register service ocpp/data_transfer_to_cs/service_id

complete request ocpp/data_transfer_to_cs/<service_id>/request

complete confirm ocpp/data_transfer_to_cs/<service_id>/confirm
Table 11 MQTT topics

Limitation: service_id must not contain: slashes, spaces, plus, hash, dollar sign

In order to use the generic DataTransfer interface the customer application needs to:

• register its service by publishing a service_id to the register topic (e.g. PID or similar
unique ID)

• subscribe to the confirm topic

• publish (no retain) the whole request as JSON to the request MQTT topic

• process JSON data from the confirm topic

3.3.8.3 MQTT formatting
The payload on the MQTT interface is formatted as JSON messages, with a formatting
corresponding exactly to OCPP messages as defined in Open Charge Point Protocol JSON
1.6, OCPP-J 1.6 Specification.

Note: The given MQTT Request/Confirm formats are usable for Central System → Charge Point
and vice versa.

MQTT Request example:

[2,"73a0d9a1−12d1−4223−ad16−90928d30de1e","DataTransfer",{"vendorId":"com.

vendor","messageId":"fooBar","data":"base64encodedData"}]

MQTT Confirm example:

[3,"73a0d9a1−12d1−4223−ad16−90928d30de1e",{"status":"Accepted","data":"bas

e64encodedData"}]

On Charge Point initiated DataTransfer, MQTT Confirm contains the exact CallResult as returned
by the Central System. If the Central System returns a CallError, this is also forwarded as such.
If the MQTT Request cannot be processed locally and therefore not forwarded to the Central
System, a CallError indicating the issue is also generated and returned.

3.3.9 Specific OCPP DataTransfer

Charge Control C supports the following DataTransfer messages:

 Get the current state of the RCD recloser

Direction Central System → Charge Point

Request

vendorId com.in-tech.smartcharging

messageId rcdRecloserGetState

data <connectorId>

Response (good case)

status Accepted

data <recloserState>

Response (bad case)

status Rejected

data <recloserReason>

 Change the current state of the RCD recloser

Direction Central System → Charge Point

Request

vendorId com.in-tech.smartcharging

messageId rcdRecloserChangeState

Charge Control C User Guide

 37

Protection Class: public

data <connectorId>, <recloserState>

Response (good case)

Status Accepted

data <recloserState>

Response (bad case)

status Rejected

data <recloserReason>
Table 12 DataTransfer message

Definition:

<recloserState>= open / close

<recloserReason>= notPresent / notAvailable / invalidRequestData

<conncectorId>= 1

3.3.10 OCPP DataTransfer for Public Key of Eichrecht Meters

The OCPP daemon supports the custom DataTransfer as specified by has.to.be in the
be.energized knowledge base.

When an Eichrecht capable meter is detected during startup, and the configuration key
sendMeterPublicKeyOnBootNotification is set to true, then the OCPP daemon sends

this custom DataTransfer message after every BootNotification.

Any failure response of the Central System is ignored, i.e. the transmission is not retried
automatically. Only after the next BootNotification, the transmission is repeated.

 Transmission of Public Key of Eichrecht Meter to Central System

Direction Charge Point → Central System

Request

vendorId generalConfiguration

messageId setMeterConfiguration

data <JSON Object containing the Public Key>

Response

status <ignored>

data <ignored>
Table 13 Public Key DataTransfer Message

3.3.11 Local Data Storage

The OCPP daemon needs to store some data on the internal eMMC storage during normal
operation. This data is located in different files on the filesystem below /var/lib/ocppd. The

files are kept during firmware update and - if necessary - the databases are migrated to newer
schema after firmware update.

Filename File type Usage

ocpp_data.json plain text / JSON Common data, connector status etc.

auth.db SQLite database authorization cache and local authorization list

transactions.db SQLite database local cache for transaction meta data and meter values

In case of trouble, these files could be deleted manually - the files are re-created after a reboot of
the Charge Control C. However, this might result in losing data: for example, transactions which
are not yet transferred/committed to the backend might get lost.

3.3.12 FTP and Path Names

When using FTP URLs for e.g. uploading diagnostic data or downloading firmware update files,
then a special feature of the FTP protocol must be taken into account: the given path in the URL
is relative to the directory the FTP client enters.

For example, to upload the diagnostic file into the directory mywallbox located inside the home

directory at the ftp site, an FTP URL in the form ftp://ftp.example.com/mywallbox/ must

be used.

https://be-energised.docs.htb.services/knowledge_base/eichrecht_transmission.html

Charge Control C User Guide

 38

Protection Class: public

If you want to upload the file to a directory myotherwallbox located in the root directory of that

same site, you need to specify the absolute path name, i.e. with an extra slash at the beginning
of the path name, e.g. ftp://ftp.example.com//myotherwallbox/

Note, that it also depends on the configuration of the FTP server itself whether the FTP client
sees "upper" directories relative to the directory at which it enters.

3.4 Timings

The following table describes the fixed timings of the charging stack:

Description Value Start point

Minimum time until a BootNotification is sent
(meter found)

40 s Boot finished

Maximum time until a BootNotification is sent (no
meter found)

60 s Boot finished

Time until fallback to Offline mode 120 s Boot finished

Delay before storing a charging profile
persistently

60 s OCPP SetChargingProfile
received

Minimum delay between two OCPP
StatusNotification

10 s OCPP StatusNotification sent

Timeout until an OCPP change configuration
request fails

1 s OCPP ChangeConfiguration
received

Timeout until an OCPP unlock connector request
fails

20 s OCPP UnlockConnector
received

Timeout until an OCPP RCD recloser change
request fails

10 s OCPP DataTransfer received

Minimum time between opening and closing
contactor

6 s Contactor opened

Table 14 Fixed timings of the charging stack

Charge Control C User Guide

 39

Protection Class: public

4 HMI

4.1 LEDs

Charge Control C has three LEDs populated.

• LED1 - green

• LED2 - yellow

• LED3 - red

Figure 1 LEDs on Charge Control C

4.1.1 LED1 (green)

Default behavior is:

• blinking: booting

• permanently on: boot is finished and charging software is operational

4.1.2 LED2 (yellow)

Default behavior is:

• permanently on: USB Stick was plugged in and is being searched for update images

• blinking (250ms on / 250ms off): update in progress

4.1.3 LED3 (red)

Default behavior is:

Charge Control C User Guide

 40

Protection Class: public

• Linux Heartbeat (pulsing depending on load)

4.2 Switches

Charge Control C comes with three switches as shown in Figure Switches on Charge Control C.

Figure 2 Switches on Charge Control C

4.2.1 SW1 - EIA-485 Termination

SW1 enables or disables the termination resistor of the EIA-485 1 available on X7.

Pos 1&2 Termination

On On

Off Off
Table 15 SW1 - EIA-485 Termination

4.2.2 SW2 - Rotary Coded Switch

The rotary coded switch is intended to provide a setup possibility for field service technicians or
similar personnel. The switch is read in software - the default use is to set up the maximum current
that the charge controller may allow for charging, and the number of phases used. The use of the
switch can be changed in software if desired.

The currently implemented current limits are:

SW2 position current limit in A number of phases

Charge Control C User Guide

 41

Protection Class: public

0 6 1

1 10 1

2 13 1

3 16 1

4 20 1

5 32 1

6 40 1

7 63 1

8 6 3

9 10 3

A 13 3

B 16 3

C 20 3

D 32 3

E 40 3

F 63 3
Table 16 Current limits

CAUTION!
Electrical shock hazard! The switch is usually locking the position of the selector at a valid
position, but it is possible to leave the selector in an invalid position between two states. Changing
the selection should only be done in power-off state!

4.2.3 SW3

SW3 is reserved for future use and is not populated at the moment.

Charge Control C User Guide

 42

Protection Class: public

5 Mechanical Dimensions

The mechanical dimensions and mounting holes of this product are dimensioned in
Figure mechanical drawing.

Figure 3 Mechanical drawing of Charge Control C

Charge Control C User Guide

 43

Protection Class: public

6 Mounting

• Mounting position is irrelevant as long as operating parameters are met.

• Every mounting hole has a copper restrict area to support mounting via enclosure domes
and screws. Screws and domes should not exceed a diameter of 7.8 mm.

• Tightening torque should not exceed 4 Nm.

Charge Control C User Guide

 44

Protection Class: public

7 Interfaces

7.1 Ethernet

This device supports 10/100 Mbit/s Ethernet. In the Linux operating system it is available as
network interface eth0. Starting with Yocto-based firmware releases, this interface is part of a
bridge interface br0, see following sections for details.

Board Interface Linux Interface

Ethernet eth0
Table 17 Ethernet

7.2 USB

USB support is composed of a USB OTG core controller. It is compliant with the USB 2.0
specification.

USB is mainly used for USB internet dongles, firmware updates and for commissioning purposes.

Currently supported peripherals:

Manufacture Model Device type Restrictions

Huawei E3531 Internet dongle (3G,
GPRS/HSDPA/UMTS)

--

Huawei E3372 Internet dongle (4G, LTE) Only supported with a separate USB
power supply via e.g. an USB 2.0 hub
with external power supply.

Table 18 Supported USB devices

7.3 EIA-485

7.3.1 Overview

In order to connect Charge Control C to a backend or an internal peripheral (e.g. smart meters,
display and RFID readers), the board supports up to two EIA-485 interfaces.

While the charging stack ships with included support for some peripheral devices, the "link to
backend" functionality is not implemented by default.

The baud rate of each EIA-485 interface is configurable up to 115200 bps.

Board Interface EIA-485 #1 isolated (X7) EIA-485 #2 (X8)

Linux Interface /dev/ttymxc0 /dev/ttymxc4

Termination yes, 120 Ohm deactivatable
via SW1

yes, 120 Ohm
permanently
activated

Failsafe Biasing1 PCB board revision ≤ V0R32:
no

yes

PCB board revision >V0R32:
yes

Intended
Usage

Charge Control C
100

link to backend / internal
peripheral

-not available-

Charge Control C
200

link to backend / internal
peripheral

-not available-

Charge Control C
300

link to backend internal peripheral

Table 19 Board Interface

1: 390 Ohm Pull-up & 390 Ohm Pull-down resistors permanently activated

2: PCB board revision string can be found on the left side of the board near the relays

Charge Control C User Guide

 45

Protection Class: public

7.3.2 Supported Peripheral Devices

The factory shipped charging stack supports several peripheral devices out-of-the-box. For each
type of peripheral, the charging stack support is provided in the form of a dedicated daemon, i.e.
"rfidd", "meteringd", "recloserd".

Since Charge Control C can be freely programmed, it is possible that customers add additional
device support on their own, writing a customer specific daemon which then replaces the
functionality of the factory shipped daemon.

Currently supported internal peripherals using Modbus:

• Electricity meter

o ABB EV3 012-100

o BZR Bauer BSM-WS36x-Hxx-1xxx-000x (as SunSpec compatible device)

o Carlo Gavazzi EM300/ET300/EM100/ET100 series

o DZG DVH4013

o Eastron SDM72D-M

o Eastron SDM230

o Eastron SDM630 v2

o Elecnova DDS1946-2P/2M

o Elecnova DTS1946-4P/4M

o Klefr 693x/694x

o Iskra WM3M4/WM3M4C

o Phoenix Contact EEM-350-D-MCB

o Socomec Countis E03/04

o SunSpec compatible meters (meter model 203)

• Recloser devices

o Geya GRD9M/L-S

• RFID reader

o StrongLink SL032 (with customized Modbus protocol)

Currently supported internal peripherals using proprietary protocols:

• RFID reader

o StrongLink SL032 (public available, proprietary protocol)

o SMART Technologies ID RFID Einbaumodul MCR LEGIC

Note: It should be avoided to use different protocols on the same connector.

The following table documents the default communication parameters for Modbus peripherals
used by the charging stack unless configured explicitly. Usually, these defaults are derived from
the meter's default settings to allow Plug & Play. But especially in cases where a meter
implementation supports several models, it must be cross-checked that the connected meter's
(default) settings matches - adapt the configuration of the meter and/or change the charging stack
configuration to make it work.

Charge Control C User Guide

 46

Protection Class: public

Peripheral Device Baud
rate

Parity Modbus
Address

Note

ABB EV3 9600 even 1 Parity cannot be changed
on meter devices, so
customer needs to
configure it in
customer.json.

BZR Bauer BSM-WS36x-Hxx-
1xxx-000x

19200 even 42 This meter responds very
slowly (up to 10s) to each
Modbus query. So it is
recommended to use it as
single device on a
dedicated RS-485 port
only. Please also consider
this when using real-time
load balancing.

Carlo Gavazzi
EM300/ET300/EM100/ET100
series

9600 none 1

DZG DVH4013 9600 none Modbus
Address
scan is
performed

DZG devices ships with
parity set to "even" by
default, so customer
needs to configure it in
customer.json.

Eastron SDM72D-M 9600 none 1 Only parity "even" is
documented as default in
device manuals.

Eastron SDM230 9600 none 1 This Eastron model is
shipped with factory
defaults set to baud rate
2400 and settings 8E1, so
customer usually needs to
change baud rate and
parity values in
customer.json.

Eastron SDM630 v2 9600 none 1 No documented defaults in
device manuals.

Elecnova DDS1946-2P/2M 9600 none 1 No documented defaults in
device manuals. The
factory Modbus address is
usually derived from the
serial number.

Elecnova DTS1946-4P/4M 9600 none 1 No documented defaults in
device manuals. The
factory Modbus address is
usually derived from the
serial number.

Klefr 693x/694x 9600 none 1

Iskra WM3M4/WM3M4C 115200 none 33

Phoenix Contact EEM-350-D-
MCB

9600 none 1

Geya GRD9M/L-S 9600 none 3

Socomec Countis E03/04 38400 none 5 The factory default
settings for Modbus
communication interface
are not documented in the
datasheet.

StrongLink SL032 (with
customized Modbus protocol)

9600 none 17

Charge Control C User Guide

 47

Protection Class: public

7.3.3 Supported Electricity Meter Features/Measurands

While the supported electricity meters all use Modbus as communication protocol, there are
differences in the supported measurands/features by the meters.

Meter Model Reading via Modbus...

Meter
Serial
Numb

er

Eichrec
ht
Support

Active
Power

(Overall
Consumpti

on)

Active
Energy
(Overall

Consumpti
on)

Voltage/Current/P
ower per Phase

ABB EV3 yes no yes yes yes/yes/yes

BZR Bauer BSM-
WS36x-Hxx-1xxx-000x

yes planned yes yes yes/yes/yes

Carlo Gavazzi
EM300/ET300/EM100/
ET100 series

yes no yes yes yes/yes/yes

DZG DVH4013 yes no yes yes yes/yes/no

Eastron SDM72D-M
(HW revision: v1)

no no yes yes no/no/no

Eastron SDM72D-M
(HW revision: v2)

yes no yes yes yes/yes/yes

Eastron SDM230 yes no yes yes yes/yes/yes

Eastron SDM630 v2 no no yes yes yes/yes/yes

Elecnova DDS1946-
2P/2M

no no yes yes yes/yes/yes

Elecnova DTS1946-
4P/4M

no no yes yes yes/yes/yes

Klefr 693x/694x yes no yes yes yes/yes/yes

Iskra
WM3M4/WM3M4C

yes WM3M
4C only

yes yes yes/yes/yes

Phoenix Contact EEM-
350-D-MCB

yes no yes yes yes/yes/yes

Socomec Countis
E03/04

yes no yes yes yes/yes/yes

For SunSpec compatible meters it depends on the specific device and model which register
values are filled by the meter's firmware. For the single phase meter models, the overall
consumption/energy corresponds to the available single phase which is internally handled as L1
phase.

Some meters also support bidirectional counting, so please double check, whether the meter is
installed in correct direction. The current charging stack does not yet support bidirectional
charging, so it's always looking for import (aka "consumption") registers. Depending on the actual
meter protocol implementation, exported current/power reported by the meter might be filtered
out and forwarded as zero value in internal MQTT API.

7.3.4 General Assumptions

An EIA-485 bus is not considered a plug and play bus. It is assumed that peripheral devices are
connected before powering the charging station, or at least power up simultaneously with the
Charge Control C board.

7.3.5 Advices/Requirements for Customer Applications

Since the implementation of peripheral device support on charging stack side consists of multiple
daemons, all daemons must coordinate their access to the same UART interface when
communicating with devices on the same EIA-485 bus.

Charge Control C User Guide

 48

Protection Class: public

So any access to the EIA-485 serial UART device (e.g. /dev/ttymxc0) must be protected by
TIOCEXCL/TIOCNXCL ioctl calls. These ioctls are functionally only ensured for non-root users.

For this reason, all daemons accessing serial ports must be run as user "daemon" and group
"dialout". While factory shipped start scripts take care of this, customers' start scripts should

mimic this behavior. Special care must also be taken during development, e.g. when manually
starting and testing daemons via SSH to run with appropriate changed uid/guid.

Another point to consider is, that serial accesses of each daemon should be limited to a short
time (<1 s). Otherwise, the functionality of other daemons using the same serial port is limited.

On Charge Control C platform, customers writing their own serial port application need be aware
about the hardware echo while sending data to the serial port. It is up to the (customer) software
to discard this local echo since it is not possible to disable the echo on hardware-side.

Customers who want to access Modbus peripherals are advised to also use libmodbus, an open-
source C library for this protocol, as factory shipped daemons do. The libmodbus variant deployed
on Charge Control C was already extended with functionality to discard the local echo on library
side. Moreover, the TIOCEXCL functionality was added. While the port locking is done
transparently, the echo discarding functionality must be enabled by customers' applications by
calling modbus_rtu_set_suppress_echo.

A customer implementation in C might look like the following example. It detects whether
libmodbus provides the modbus_rtu_set_suppress_echo call and is thus usable in native

PC environments with standard libmodbus as shipped by Linux distributions, but also uses the
feature when available/running on a Charge Control C device.

Charge Control C User Guide

 49

Protection Class: public

...

#include <modbus/modbus.h>

int modbus_rtu_set_suppress_echo(modbus_t *ctx, bool on)

__attribute__((weak));

...

int main(int argc, char *argv[])

{

 /* the libmodbus context */

 modbus_t *mbctx;

 /* set local_echo to true if you run on a platform which has local

hardware echo */

 bool local_echo = true;

 ...

 mbctx = modbus_new_rtu(...);

 if (modbus_rtu_set_suppress_echo) {

 printf("Info: %senabling local echo suppression", local_echo ? ""

: "not ");

 modbus_rtu_set_suppress_echo(mbctx, local_echo);

 } else {

 if (local_echo) {

 printf("Error: local echo suppression support requested, but

no support in libmodbus.");

 exit(1);

 } else {

 printf("Info: libmodbus without local echo suppression

support");

 }

 }

 ...

}

Code Block 1 Using libmodbus' Local Echo Suppression Feature from a C program

Our modified source code of libmodbus can be found on Github.

We also included a libmodbus recipe in our Yocto BSP distribution layer which uses our libmodbus
repository as source when building/including libmodbus in the firmware image.

7.3.6 Metering Daemon

7.3.6.1 Start-up Behavior
When configured for "dzg" in customer.json and no meter serial number is provided, then during
power up of the charging station a single scan of the Modbus address range 01 - 99 is performed
by the metering daemon. In worst case this takes up to nearly 60 seconds. While the scan is
active, no other access to the EIA-485 bus is possible.

For other meter protocols, no such bus scan is implemented, and the factory defaults of the
electricity meter are assumed (i.e. Modbus address). This can be overwritten via customer.json
by configuring a Modbus address explicitly.

7.3.6.2 Behavior in case of unavailability
During power up, no further scan attempt is made in case no meter was found during scan or
when no meter was found under the expected Modbus address.

However, during normal operation, the metering daemon is safe against temporary disconnects
or unavailability.

https://github.com/I2SE/libmodbus/tree/i2se-master

Charge Control C User Guide

 50

Protection Class: public

For example, the Klefr meters make a CRC check after power cycling during which the meters do
not respond to Modbus queries and thus cause temporary unavailabilities. In order to workaround
this behavior and to prevent reporting power meter failures during charging, a specific timeout of
10 seconds is implemented for these meters, while for all other meter types the timeout is set to
2 seconds before reporting an error.

7.3.7 RFID / Recloser Daemons

In contrast to the metering daemon, when these daemons do not find their peripheral devices
during booting up, they continue to try to communicate with the peripherals.

7.4 Mains PLC

This device supports 10 Mbit/s HomePlug Green PHY™ power line communication on mains.
This interface is available (if present) as eth2. Please note, that for security reasons this interface
does not ship from factory with the Network Management Key (NMK) set to "HomePlugAV" like
traditional powerline devices did for a long time to ease installation. During the manufacturing
process, a random NMK is generated for each device and installed as factory default setting. This
prevents attackers from accessing the device over mains powerline with a well-known NMK.

Board Interface Linux Interface

Mains PLC eth2
Table 20 Mains PLC

Charge Control C User Guide

 51

Protection Class: public

7.4.1 Pairing

When your HomePlug compatible companion is already setup and working, you are ready to join the powerline network.

For this you need to pair the Charge Control C with your HomePlug compatible companion.

There are currently two different ways of pairing PLC devices with Charge Control C.

Putting into service the Powerline connection by means of the push button method

The push button pairing method is the most famous method. Charge Control C has no push button to activate this method, but the push button can be
simulated with on-board tools.

1. Press the powerline security button on the companion (e.g. wallplug adapter) to start the pairing process.

2. Run the following command on Charge Control C - this emulates pressing the pairing button of the evaluation board:

root@tarragon:˜ $ plctool −B join −i eth2

eth2 00:B0:52:00:00:01 Join Network

eth2 00:01:87:FF:FF:2B Joining ...

root@tarragon:˜ $

3. You should see the remote powerline adapter after a short while:

root@tarragon:˜ $ plcstat −t −i eth2

 P/L NET TEI −−−−−− MAC −−−−−− −−−−−− BDA −−−−−− TX RX CHIPSET FIRMWARE

 LOC STA 002 00:01:87:FF:FF:2B 00:01:87:FF:FF:FE n/a n/a QCA7000 MAC−QCA7000−1.1.3.1531−00−20150204−CS

 REM CCO 001 00:0B:3B:AA:86:55 E0:CB:4E:ED:1F:53 009 009 INT6400 INT6000−MAC−4−1−4102−00−3679−20090724−FINAL−B

root@tarragon:˜ $

4. You have successfully created a powerline connection.

Charge Control C User Guide

 52

Protection Class: public

Putting into service the Powerline connection using software

You can also add the device by means of DAK (Device Access Key, often also called device
password or security ID) to an existing powerline network or couple it with a powerline Ethernet
adapter. The DAK is indicated in the device labels 2D DataMatrix code of the Charge Control C.
It consists of 4 x 4 letters, separated by hyphens.

1. Note this DAK and install the device in the power grid.

2. After the device has been put into service, you can add the device to the existing
powerline network using the software of your powerline companion (e.g. FRITZ!Powerline
or Devolo Cockpit for powerline ethernet adapter as powerline companion).

3. In doing so, the DAK is to be entered.

4. Please refer to the documentation of your powerline companion for further information
about this process.

7.5 Control Pilot / Proximity Pilot

For ISO 15118 / DIN 70121 compliant communication between EVSE and PEV, Charge Control
C supports CP (control pilot) and PP (proximity pilot) signaling including Green PHY
communication. This Green PHY communication is available on interface eth1.

Since for EVSE/EV communication only IPv6 SLAAC is required, there is no further configuration
(IPv4 etc.) necessary for this Linux interface.

Board Interface Linux Interface

Control Pilot PLC eth1
Table 21 Control Pilot / Proximity Pilot

Note: The Charge Control boards use a Qualcomm Atheros QCA7000 chip for Green PHY
communication on CP line. The shipped QCA7000 firmware configuration contains a default set
of prescalers which influence the CP signal level (,,loudness”). It is recommended to re-check
these settings in customer’s specific setup and environment and tune them accordingly if
necessary.

7.6 Locking motors

Charge Control C provides connectors for 2 locking motors. Currently only the plug lock motor is
handled by the Charging stack.

The locking motor outputs (M- and M+) are controlled via GPIO (IN1 and IN2) with a logical
behavior.

M+ = IN1 ∧ ¬IN2

M- = IN2 ∧ ¬IN1

Additionally, for the X9 interface IN1 must be inverted

Figure 4 Locking Motor Logic

7.6.1 Plug lock motor X9

Board Interface Polarity Linux Interface

IN1 active low /sys/class/gpio/gpio71

IN2 active high /sys/class/gpio/gpio72

FAULT active low /sys/class/gpio/gpio19

SENSE ADC - /sys/bus/iio/devices/iio:deviceX/in_voltage0_raw

Charge Control C User Guide

 53

Protection Class: public

Table 22 Plug lock motor X9

7.6.2 Cover lock motor X10

Board Interface Polarity Linux Interface

IN1 active high /sys/class/gpio/gpio73

IN2 active high /sys/class/gpio/gpio136

FAULT active low /sys/class/gpio/gpio25

SENSE ADC - /sys/bus/iio/devices/iio:deviceX/in_voltage1_raw
Table 23 Cover lock motor X10

Note: Since the enumeration of the IIO device depends on all connected devices, it is not
guaranteed that the ADC is always iio:device0. Therefore, the name of the IIO device should
always be checked (name must be 2198000.adc).

7.7 Relays

Board Interface Signal Name Linux Interface MQTT topic

R1 NO_1 /sys/class/gpio/gpio76 port0/contactor/state/target

S1 SENSE_1 /sys/class/gpio/gpio131 port0/contactor/state/actual

R2 NO_2 /sys/class/gpio/gpio77 port0/ventilation/state/target

S2 SENSE_2 /sys/class/gpio/gpio130 port0/ventilation/state/actual
Table 24 Relays

The MQTT topics reflect the usual charging stack configuration where relais 1 is used to switch
the (primary) contactor and relais 2 switches an external ventilation device.

7.8 1-Wire

This is a generic 1-Wire interface. It is realised with an I2C to 1-wire bridge. The bridge is handled
by the DS2484 1-Wire Linux driver and provides the interface /sys/bus/w1/.

’Application Note 7 - Charge Control C - Thermal Management’ shows an example of how to use
the 1-Wire bridge. Since Charge Control C can be freely programmed, it is possible to add device
support on your own.

Board Interface Linux Interface

1-Wire /sys/bus/w1/
Table 25 1-Wire

7.9 Digital Input & Output

7.9.1 Digital Input

Charge Control C supports up to six digital inputs. All digital inputs have one common adjustable
reference level from 0 V until +12 V.

The reference voltage can be set through period time and duty cycle of a PWM in nano seconds
[ns].

A 100% duty cycle corresponds to around 12 V reference voltage.

The required duty cycle to a given period time and reference voltage can be calculated with the
following formula:

duty_cycle[ns]=reference_voltage[V]*period[ns]/12V

E.g. reference voltage should be 6 V while reference voltage generator is driven with a 25 kHz
PWM signal:

• duty_cycle = 6 V * (1/25000 Hz * 10ˆ9) / 12 V = 20000 ns

Vice versa the set reference voltage can be calculated:

Charge Control C User Guide

 54

Protection Class: public

reference_voltage[V]=duty_cycle/period*12V

Board Interface Linux Interface Preconfigured function Polarity

DIG_IN_1 /sys/class/gpio/gpio121 emergency switch active high

DIG_IN_2 /sys/class/gpio/gpio122 RCD feedback active high

DIG_IN_3 /sys/class/gpio/gpio124 authorization key switch active high

DIG_IN_4 /sys/class/gpio/gpio123

DIG_IN_5 /sys/class/gpio/gpio116

DIG_IN_6 /sys/class/gpio/gpio119
Table 26 Digital Input

To use the digital inputs in Linux userspace, the corresponding GPIO may need to be exported
and set to correct direction.

e.g.:

echo "119" > /sys/class/gpio/export

echo "in" > /sys/class/gpio/gpio119/direction

Board Interface Linux Interface

reference voltage duty cycle /sys/class/pwm/pwmchip1/pwm0/duty_cycle

reference voltage period time /sys/class/pwm/pwmchip1/pwm0/period
Table 27 Board and Linux Interface

7.9.2 Digital Output

Charge Control C supports up to six digital outputs.

The digital outputs are real push-pull drivers. Up to 100 mA can be drawn from a single output.

Board Interface Linux Interface Preconfigured function Polarity

PUSH_PULL_OUT_1 /sys/class/gpio/gpio84 status LED active high

PUSH_PULL_OUT_2 /sys/class/gpio/gpio85

PUSH_PULL_OUT_3 /sys/class/gpio/gpio86

PUSH_PULL_OUT_4 /sys/class/gpio/gpio87 RCD test trigger active high

PUSH_PULL_OUT_5 /sys/class/gpio/gpio88

PUSH_PULL_OUT_6 /sys/class/gpio/gpio89
Table 28 Digital Output

Status LED behavior:

• solid high = ready

• 1000 ms high. 1000 ms low = charging

• 100 ms high, 100 ms low = error

To use the digital outputs in Linux userspace, the corresponding GPIO may need to be exported
and set to correct direction.

e.g.:

echo "89" > /sys/class/gpio/export

echo "out" > /sys/class/gpio/gpio89/direction

7.10 4-wire fan

Charge Control C uses common tools like the hwmon/ thermal framework of the Linux Kernel.

As per default, Charge Control C only uses the thermal sensor on the i.MX6ULL SoC and tries to
regulate the temperature via the X3 fan connector. The responsible program is the shell script
"fancontrol" (taken from lmsensors) which is started automatically during boot on Charge Control
C 300.

Charge Control C User Guide

 55

Protection Class: public

8 Board Connections

Charge Control C has 14 connectors (X1...X14) and three pinheaders (JP1...JP3) as shown in
Figure connectors of Charge Control C.

The pinheaders are for configuring (JP1), debugging (JP2) and expanding (JP3) purposes.

The connectors are used to establish the connection to the external EVSE periphery.

Figure 5 Connectors of Charge Control C

Please refer to the according section of the datasheet for electrical input and output values.

8.1 X1 - mains

The connector is used to connect the mains voltage to it. It provides a filtered mains output.

Connecting the AC/DC-power-supply to this output port helps improving PLC signal integrity while
using noisy power supplies.

Up to 250 mA can be drawn from this port.

Pin# Signal Note

1 L_FILTERED filtered mains output L

Charge Control C User Guide

 56

Protection Class: public

2 N_FILTERED filtered mains output N

3 L mains input L

4 N mains input N

5 PE protective earth, also board GND reference level
Table 29 X1 - mains

8.2 X2 - DC in

This product needs DC supply voltage input.

Pin# Name

1 +12V

2 GND
Table 30 X2 - DC in

8.3 X3 - fan

Charge Control C provides an output for 4-Wire pulse width modulation (PWM) controlled fans.

Pin# Signal

1 CONTROL

2 SENSE

3 +12V

4 GND
Table 31 X3 - fan

ATTENTION! Most fans have a pullup on the tach signal resulting in signals exceeding the
absolute maximum rating of the fan interface. This could potentially destroy the whole device.

8.4 X4 - 1-Wire

This product provides a 1-Wire master interface where 1-Wire downstream slave devices (such
as temperature sensors) can be connected.

Pin# Signal

1 1W_IO

2 GND
Table 32 X4 - 1-Wire

8.5 X5 - Control and Proximity pilot

The connector is used for connecting to EV. It provides the signals for control pilot, proximity pilot
as well as Green-PHY powerline communication.

Pin# Signal

1 Control pilot

2 Proximity pilot
Table 33 X5 - Control and Proximity pilot

8.6 X6 - Ethernet - USB

X6 is a stacked Ethernet and USB connector.

8.6.1 Ethernet

The Ethernet port supports 10/100 MBit/s and has embedded link and activity LED indicators.

8.6.2 USB

Charge Control C usually acts as USB host at this port. Up to 500 mA can be drawn from this
port. It also can be used for provisioning purposes.

8.7 X7 - EIA-485 1

The first EIA-485 (RS-485) of Charge Control C is a galvanically isolated one.

Pin# Signal

Charge Control C User Guide

 57

Protection Class: public

1 B

2 A

3 REF
Table 34 X7 - EIA-485 1/2

8.8 X8 - EIA-485 2 / CAN

This connector is used to connect to the i.MX6ULL using CAN or EIA-485 (RS-485). Whether X8
is a CAN or EIA-485 interface is an assembly option of the board. Please see ordering information
to select the appropriate variant.

Both interfaces are referenced to GND.

Pin# Signal

 CAN RS-485

1 H B

2 L A

3 GND
Table 35 X8 - EIA-485 2/2 - CAN

8.9 X9 / X10 - Locking Motor

X9 and X10 have the same pinout.

Pin# Signal

1 M-

2 M+

3 SENSE

4 GND
Table 36 X9 / X10 - locking motor

Only X9 supports motor lock failsafe opening in case of power loss.

There are locking motors available with different internal feedback circuity. Attach them according
to the following images.

Figure 6 Scame 200.23260BS

 9 / 10

1

2

3

M

Charge Control C User Guide

 58

Protection Class: public

Figure 7 Scame 200.23261BS/BL

Figure 8 Scame 200.23261BP

 9 / 10

1

2

3

M

 9 / 10

1

2

3

M

Charge Control C User Guide

 59

Protection Class: public

Figure 9 Typical Küster 02S, Phoenix Motor

Figure 10 Typical Küster 0 S Motor, Rs=1kΩ, Rp=10kΩ

 9 / 10

1

2

3

M

 9 / 10

1

2

3

M

RS

RP

Charge Control C User Guide

 60

Protection Class: public

Figure 11 Typical Hella, Bals, Menekes & Walther Werke Motor

8.10 X11 - Digital In

This port supports digital inputs with digital adjustable reference level of up to +12 V.

Pin# Signal

1 DIG_IN_1

2 DIG_IN_2

3 DIG_IN_3

4 DIG_IN_4

5 GND
Table 37 X11 - digital in

8.11 X12 - Digital In and Out

This port supports two digital inputs with digital adjustable reference level of up to +12 V and two
digital outputs. The outputs are real push-pull drivers. Up to 100 mA can be drawn from a single
output.

Pin# Signal

1 DIG_IN_5

2 DIG_IN_6

3 PUSH_PULL_OUT_6

4 PUSH_PULL_OUT_5
Table 38 X12 - digital in and out

8.12 X13 - Digital Out

This port supports digital outputs with real push-pull drivers. Up to 100 mA can be drawn from a
single output.

Pin# Signal

1 PUSH_PULL_OUT_4

2 PUSH_PULL_OUT_3

3 PUSH_PULL_OUT_2

4 PUSH_PULL_OUT_1

5 GND
Table 39 X13 - digital out

 9 / 10

1

2

3

M

Charge Control C User Guide

 61

Protection Class: public

8.13 X14 - Relays

Two normally open (NO) relays are populated on Charge Control C. They are able to handle
mains voltage level. One sense input for every switched load is supported.

Pin# Signal Description

1 COM_L mains L input

2 NO_1 relay #1 switched L output

3 SENSE_1 relay #1 sense input

4 NO_2 relay #2 switched L output

5 SENSE_2 relay #2 sense input
Table 40 X14 - relays

Both sense inputs need reference to Neutral (N). Leave it open for "inactive" feedback. Tie it to
Neutral (N) for "active" feedback.

8.14 JP1 - Bootmode Jumper

Jumper Position Bootmode

1-2 USB serial downloader

2-3, or removed eMMC internal boot
Table 41 JP1 - bootmode jumper

8.15 JP2 - Debug UART

JP1 Signal

1 GND

2 not connected

3 not connected

4 RX of i.MX6ULL

5 TX of i.MX6ULL

6 not connected
Table 42 JP2 - debug UART

This pinout is compatible with a variety of USB/RS232 adapters. Preferably you should use the
FTDI cable "TTL-232R-3V3" or similar. Do not use long wires to connect the debug UART.

ATTENTION! Do not use generic RS232 adapters, as they usually have 12 V voltages for their
logic signals. The pins here are only 3.3 V tolerant. You may damage the debug UART with
incompatible adapters.

8.16 JP3 - Expansion Port

JP3 is a connector for additional expansion boards. Please contact sales team for details.

8.17 Mating Connectors

Header
Designator

Pin
Count

Matching
Terminal Block

Rated Wiring Solid
Wire

Rated Wiring
Stranded Wire

Metric AWG Metric AWG

X1, X14 5 Metz Connect
SP06505VBNC

0.08 mm²
- 2.5 mm²

AWG 28
- AWG
12

0.08 mm²
- 2.5 mm²

AWG 28
- AWG
12

X2, X4, X5 2 Würth Elektronik
691381000002

0.08 mm²
- 0.5 mm²

AWG 28
- AWG
20

0.08 mm²
- 0.5 mm²

AWG 28
- AWG
20 X8 3 Würth Elektronik

691381000003

X3, X9, X10,
X12

4 Würth Elektronik
691381000004

X11, X13 5 Würth Elektronik
691381000005

Table 43 Mating Connectors

Charge Control C User Guide

 62

Protection Class: public

Note: Terminal blocks of alternative suppliers might have a different count or position of the
"coding noses" and therefore might not fit.

Charge Control C User Guide

 63

Protection Class: public

9 Use Cases

In the following sections typical use cases for the Charge Control C family are shown.

Signals and components drawn with light gray color are optional signals and components and are
not required for successful charging behavior.

9.1 IEC 61851 AC charging

A basic AC charging station including IEC 61851 conform proximity detection, control pilot
function and PWM charging signal can be built up with every member of the Charge Control C
family.

Different kinds of IEC 61851 compliant charging stations are shown below.

9.1.1 One phase charging

A typical Charge Control C - 100 based EV charging station is shown by Figure Use Case Charge
Control C - 100 - 1 Phase Charging and consists of:

• Charge Control C - 100

• 12 V - AC/DC converter

• Type-2 cable

• Mains contactor

• RCD Type B with feedback signal

• Status LED

• Circuit breaker

• Emergency switch

Charge Control C User Guide

 64

Protection Class: public

Figure 12 Use case Charge Control C - 100 - 1 Phase Charging

9.1.2 Three phase charging

The realization of 3 phase EV charging stations are possible with all variants of Charge Control
C. Figure Use Case Charge Control C - 100 - 3 Phase Charging shows Figure Use Case Charge
Control C - 100 - 1 Phase Charging but in 3 phase configuration.

Charge Control C User Guide

 65

Protection Class: public

Figure 13 Use case Charge Control C - 100 - 3 Phase Charging

9.2 ISO 15118 AC charging

AC charging stations with ISO 15118 control and proximity pilot signals as well as the PWM
charging signal, conform to IEC 61851, can be built up with Charge Control C 200/300.

Different kind of ISO 15118 compliant charging station are shown below.

9.2.1 Type-2 cable connection

A typical Charge Control C - 200 based EV charging station is shown by Use case Charge Control
C - 200 - with fixed charging cable and consists of:

• Charge Control C - 200

• 12 V - AC/DC converter

• Type-2 cable

• Mains contactor

• RCD Type B with feedback signal

• Status LED

• Circuit breaker

• Emergency switch

• Ventilation for the charging area

• Smart meter (RS-485)

• Temperature sensors (1-Wire)

Charge Control C User Guide

 66

Protection Class: public

• RFID reader (RS-485)

• Display (RS-485)

• Backend (Connected via Ethernet)

Figure 14 Use case Charge Control C - 200 - with fixed charging cable

9.2.2 Type-2 inlet connection

Charge Control C is capable of driving Type-2 Inlet locking motors. Therefore, it is possible to
build charging stations with Type-2 inlet instead of fixed Type-2 cable. Figure Use case Charge
Control C - 200 - with pluggable charging cable shows Figure Use case Charge Control C - 200
- with fixed charging cable-configuration but with Type-2 inlet and interlock instead of fixed Type-
2 cable.

Charge Control C User Guide

 67

Protection Class: public

Figure 15 Use case Charge Control C - 200 - with pluggable charging cable

9.2.3 Three phase charging

Only Charge Control C - 300 supports the full set of available connectors.

A typical Charge Control C - 300 based EV charging station consists of:

• Charge Control C - 300

• 12 V - AC/DC converter

• Type-2 cable

• Mains contactor

• RCD Type B with feedback signal

• Status LED

• Circuit breaker

• Emergency switch

• Ventilation for the charging area

• RS-485 devices (Smart meter, RFID reader, Display) distributed over two separate RS-
485 interfaces

• Temperature sensors (1-Wire)

• Backend (Connected via Ethernet)

• Enclosure ventilation

Charge Control C User Guide

 68

Protection Class: public

• supports more input and output ports for additional I/O-devices

Figure 16 Use case Charge Control C - 300 - in 3 phase configuration and with pluggable charging cable

Charge Control C User Guide

 69

Protection Class: public

10 Programming

Charge Control C is shipped with pre-flashed firmware including the Charge Control charging
stack. However, it is possible for customers to add new programs and customer software and/or
modify none-charging stack configuration files. The shipped firmware was created with Yocto, a
project to create custom Linux distributions for embedded devices. Please have a look at the
project's website at https://www.yoctoproject.org/ to get familiar with it.

To create a Linux system for Charge Control C, please follow our Board Support Package
documentation in our public Github repository at: https://github.com/chargebyte/chargebyte-bsp

Some general notes and recommendation for custom software development:

• Develop your customer software on your local PC Linux environment. Here you can use
compiler, debugger etc. you are familiar with. Since Charge Control stack’s API is
provided via MQTT, you can simply setup one "developer" Charge Control C device and
access the stack’s API via Ethernet network. If everything works as expected in this
setup, then switch to cross-compiling for the target system.

• Use autotools or cmake and pkg-config in your customer software projects as build
environment. Prefer such mature and proven tools since these are widely supported and
understood, and cross-compiling with these tools is usually easy. Also Yocto itself has
rich support for those widely used tools.

• If you start your project from scratch, have a look at libraries which are already required
by Charging Stack and/or Linux distribution. Re-use these libraries to keep the overall
firmware footprint small. The benefit is when updating the boards, it will take less time
when transferring the firmware update image and flashing it to internal storage.

• You have to decide how your own software components will finally interact with the
Charge Control stack. For example when writing a daemon for a custom EIA-485
peripheral device: does it need to run in parallel to the factory shipped daemons (e.g.
meteringd, rfidd)? Are factory daemons just disabled per configuration file
(customer.json), or are such daemons even removed completely from your custom
firmware image? In the first case, please also have a look at section
Advices/Requirements for Customer Applications.

10.1 Firmware Update Customization and Signing

After making sure that the customized software is working on the board, there might be the
requirement to pack this with our pre-flashed firmware to create your own firmware update file
which should be signed. This facilitates the production process. The following steps illustrate how
to create your own signed firmware update image. For this you would need a native Linux machine
or a Linux virtual machine which includes the tool "RAUC"
(https://rauc.readthedocs.io/en/latest/index.html). RAUC is the framework we use for performing
our firmware update. During the steps, the tool will be used to extract our firmware image, re-pack
it including your customized software and sign the new firmware update image. Note that you
need your own Public Key Infrastructure (PKI) to sign firmware update images later.

1. Download chargebyte's digital certificate found on chargebyte's website which is used to
validate firmware update images distributed by chargebyte GmbH.

2. Download the latest firmware update image found on chargebyte's website.

3. Download and install RAUC tool for the host environment; follow the guide
here: https://github.com/rauc/rauc/#host-build-prerequisites It is also possible, that your
Linux distribution already ships with pre-compiled packages which just need to be
installed with your package management system. In this case, you can skip this step.

https://www.yoctoproject.org/
https://github.com/chargebyte/chargebyte-bsp
https://rauc.readthedocs.io/en/latest/index.html
https://github.com/rauc/rauc/#host-build-prerequisites

Charge Control C User Guide

 70

Protection Class: public

$ sudo apt-get install build-essential automake libtool libdbus-1-

dev libglib2.0-dev libcurl3-dev libssl-dev libjson-glib-dev

$ git clone https://github.com/rauc/rauc

$ cd rauc

$./autogen.sh

$./configure --prefix=/usr

$ make

$ sudo make install

$ cd ..

4. Create your own PKI if you do not have one already
(see https://rauc.readthedocs.io/en/latest/advanced.html#security).

5. Extract the root filesystem image shipped by chargebyte from the firmware update image
file. Note that the directory "bundle-staging" will be created, and the content of the
firmware update image file will be extracted into it.

$ rauc extract --keyring=<chargebyte_certificate>.crt

<shipped_firmware>.image bundle-staging

6. Mount the ext4 root filesystem image as a loop device.

$ sudo mkdir -p /tmp/rootfs

$ sudo mount bundle-staging/core-image-minimal-tarragon.ext4

/tmp/rootfs -o loop

7. Modify and extend the root file system image with your customized software by changing
the files/directories below the mountpoint.

a. Install your PKI certificate which is used later during firmware updates to verify
your firmware update file. For this step you need to copy your PKI certificate,
created in step 4, and place it under /tmp/rootfs/etc/rauc/. Then, replace

the /tmp/rootfs/etc/rauc/keyring.pem symlink with your PKI

certificate.

$ cp <your_CA_certficate>.crt /tmp/rootfs/etc/rauc/

$ cd /tmp/rootfs/etc/rauc/

$ ln -sf <your_CA_certficate>.crt

/tmp/rootfs/etc/rauc/keyring.pem

b. Copy your additional files, software components etc. from your developer board
into this corresponding directory below /tmp/rootfs .

8. Unmount the loop device with

 $ sudo umount /tmp/rootfs

9. Make sure that the customized filesystem is in a clean state. This is important since
otherwise, the installation process and/or the production process would fail.

$ fsck.ext4 -f bundle-staging/core-image-minimal-tarragon.ext4

10. This step only needs to be done, if you want chargebyte to intially flash your own firmware
during the manufacturing process of the Charge Control C boards.
Create MD5 hashsum of the file with the following command. This hash is used during
production process to ensure that the image file is not altered but installed correctly into
flash. Please send us this hash.

https://rauc.readthedocs.io/en/latest/advanced.html#security

Charge Control C User Guide

 71

Protection Class: public

$ md5sum bundle-staging/core-image-minimal-tarragon.ext4

11. Pack your modified root filesystem image into a firmware update file. The firmware update
file must be signed with your PKI using the RAUC tool.

$ rauc bundle --keyring=<your_CA_certficate>.crt --

key=<your_key>.key --cert=<your_certificate>.crt bundle-staging

<your_firmware_update>.image

12. Test the firmware update image file. On the test board, transfer your PKI to the board via
SFTP to /etc/rauc folder so that the board accepts your firmware updates. The

symbolic link refers originally to our chargebyte certificates, so you probably would need
to change this. After this, the board should be rebooted.

$ cd /etc/rauc

$ ln -sf <your_CA_certficate>.crt /etc/rauc/keyring.pem

$ reboot

13. Transfer your newly created firmware update image <your_firmware_update>.image via
SFTP to /srv folder on your test board.

14. Install the image via SSH or debug UART with the command rauc install

/srv/<your_firmware_update>.image. Wait until the update is installed and

reboot the test board.

10.2 Board customization with USB

For an easier customization of the boards e.g., modification of configuration files or updating to a
new customized firmware, a USB flash drive can be used. This is a two-step process where in
the second step a script, which you need to write, would be triggered automatically to perform the
customization you want to the board. However, for this script to run, a first step of replacing our
/etc/rauc/keyring.pem with your CA certificate must be performed. This step is also done

automatically when you insert a USB flash drive in the USB port of the board. Below is a
description of how this feature behaves, and the requirements that must be fulfilled for a
successful process.

10.2.1 Replacement of /etc/rauc/keyring.pem

1. Send us your pubilc CA certificate so that we can sign i.e., cross-sign it for you with our
certificates.

2. On a USB flash drive, place your cross-signed CA certificate together with the
corresponding signature file. The pair has to be named as follows: fwupdate-

keyring.pem & fwupdate-keyring.pem.p7s. You would get this pair from us as a

result of step 1.

3. Insert the USB flash drive in the USB port of the board. The following behavior will be
triggered automatically:

a. The onboard yellow diagnostics LED is turned on to indicate the detected USB
flash drive.

b. It is checked whether the pair fwupdate-keyring.pem and fwupdate-

keyring.pem.p7s exist on the USB flash drive.

c. It is checked whether fwupdate-keyring.pem is contains at least one X.509

certificate.

d. It is checked whether the signature of fwupdate-keyring.pem is valid against

the current certificate found in /etc/rauc/keyring.pem. This is originally a

symbolic link referring to our CA certificates. Therefore, step 1 is needed.

Charge Control C User Guide

 72

Protection Class: public

e. If the verification has succeeded, the current /etc/rauc/keyring.pem will be

deleted, and the content of fwupdate-keyring.pem is saved as new

/etc/rauc/keyring.pem. From this point in time, this new certificate is active

for all later uses, i.e. further customizations but also regular firmware updates.

10.2.2 Performing customization through autorun.sh

This assumes that the first step has successfully ended, and the file /etc/raun/keyring.pem

now contains your CA certificate. However, this will also work later at any time, as long as the CA
certificate matches to the script signature.

1. Write a script that contains the customization you want to do. This has to be named
autorun.sh.

2. Sign it by your key and certificate. The resulting signature file must be named
autorun.sh.p7s.

3. Place the pair on a USB flash drive and insert it in the USB port of the board. The following
behavior will be triggered automatically:

a. It is checked whether the pair autorun.sh and autorun.sh.p7s exist on the

USB flash drive.

b. It is checked whether the signature of autorun.sh is valid against the current

certificate found in /etc/rauc/keyring.pem . Remember, that this usually

now contains your CA certificate.

c. If the verification has succeeded, the current working directory is changed to the
mount point where the USB flash drive was mounted, and the autorun.sh

script is executed by means of /bin/sh. The changed working directory should

make it easier to reference files you want to install from the USB flash drive.

10.2.3 Notes

• If you call reboot within your autorun.sh script, this will not end the execution of the

script immediately, but the upcoming lines of the script will continue to be executed until
the reboot command is propagated through the system.

• Every time you insert the USB flash drive or perform a reboot, we prevent re-execution
of your customized autorun.sh script if it has not been changed. This does not depend

on the success of your script, i.e., the return value of the script. This is done by saving
the MD5 checksum of autorun.sh found on the USB flash drive in the file

/var/cache/usb-autorun/executed.list. You can control this behavior in your

autorun.sh by e.g., removing the executed.list file completely or just deleting

single MD5 checksums from it.

• Please keep in mind, that certificate verifications are done without time checking since it
cannot be ensured that the device has a valid date/time at the moment when you want to
use this feature.

• To sign autorun.sh and get autorun.sh.p7s as a signature file, the following

commands can be used - typically on your Linux developer host system:

openssl smime -sign -outform DER -binary -inkey <your-releasemanager-

key>.key -signer <your-releasemanager-certificate>.crt -in autorun.sh -out

autorun.sh.p7s

• To verify autorun.sh against your CA certificate, the following command can be used:

Charge Control C User Guide

 73

Protection Class: public

openssl smime -verify -no_check_time -inform DER -CAfile

<your_CA_certificate>.crt -content autorun.sh -in autorun.sh.p7s

10.3 Recovery of customer.json

It may occur that the configuration file under /etc/secc/customer.json gets damaged either

by being corrupted or deleted. To make the customer.json more reliable, a startup script was

added in firmware 3.3.0 which checks for the existence of /etc/secc/customer.json and

that it is not an empty file. If the file does not exist or is empty, the script recovers it from a
previously created backup file created by configd under /var/backups/customer.json , or -

in worst case- from the factory-default version under /etc/secc/customer.json.shipped.

Charge Control C User Guide

 74

Protection Class: public

11 Firmware upgrade

The following sections describe different ways to install a firmware upgrade on your Charge
Control product. Please ensure that the power supply is stable during a firmware upgrade. In case
of an unsuccessful update or of power loss during the installation of the update, the Charge
Control device performs a rollback to the previous stable version of the charging firmware. For
more information about the rollback mechanism, see the section Rollback mechanism. The
update is finished when the board is rebooted and the green LED1 switches from blinking to
steady-on. The board can now be safely switched off by turning off the power supply.

The currently installed firmware can be checked with the MQTT topic
"ci/global/version/charging_software”, whose value is determined at boot and

retained. This topic can also be used as a general indication that the charging software is running
and operational.

11.1 Partitioning

The internal eMMC storage of a Charge Control device is divided into several partitions. The main
aim is to have two independent systems available, i.e. system A and system B. This allows to run
firmware updates in background while performing normal charging operation and then switch to
the updated system with a fast restart of the device. This also allows to support a rollback
mechanism in case of failures during firmware updates. In other words, during a firmware update,
the active root file system switches from A to B or vice versa, leaving the other as rollback.

Partition Size Description

/dev/mmcblk0p1 1 GB Root file system A

/dev/mmcblk0p2 1 GB Root file system B

/dev/mmcblk0p3 Extended Partition Container

/dev/mmcblk0p5 1 GB Data Partition (/srv). This partition can be accessed by both root
file systems and will be not changed during update process.

/dev/mmcblk0p6 128 MB Logging file system A (/var/log)

/dev/mmcblk0p7 128 MB Logging file system B (/var/log)

eMMC Partitioning

Filesystem Mountpoints

Charge Control C User Guide

 75

Protection Class: public

11.2 Update via USB

Preparation of the USB update

1. Download the firmware update image file onto your workstation. The file size is about 30
MB in current standard configuration.

2. Plug a USB flash drive into your workstation.

3. Format the USB flash drive as EXT2/3/4, FAT16/32, exFAT or NTFS.

4. Copy the firmware update image file (*.image) onto the USB flash drive's root directory.

Notes:

• The exFAT filesystem is supported since firmware version 3.1.0.

• Do not place multiple *.image files for Charge Control onto the root folder of the USB
flash drive, since it is not guaranteed in which order the files are tried and applied.

Updating the Charge Control Firmware

1. Connect the board to the power supply.

2. Wait until the board is booted.

3. Connect to the board via SSH or Debug UART to backup all your own implementation
and configuration files.

4. Plug in the USB flash drive with the Firmware Update Image file in the USB port of the
board.

5. Observe the LED update indications:

o If the USB is plugged, the yellow LED (LED2 of the board) is turned on statically.

o If the update process has started, the yellow LED is blinking (250ms on/250ms
off).

o In case no update file was compatible, the yellow LED is turned off.

o If the firmware update is successful, the device is rebooted and LED is now
turned off.

o After the device is rebooted, the USB flash drive is detected again and thus the
yellow LED is also turned on again.

o But now the new firmware notices that the firmware update is already installed
and the yellow LED is turned off again (this can take some time).

6. Wait until the whole firmware update and reboot process is finished - it takes up to 5
minutes.

7. When the firmware update process is finished and the yellow LED is turned off again, the
USB flash drive can be unplugged.

11.3 Update via SSH and SFTP

1. Connect to the board via SSH (e.g. PuTTY).

2. Backup all your own implementation and configuration files if necessary.

3. Transfer the update image file via SFTP to the board and store it in the directory /srv

with e.g. filename my-update.image.Note: On Windows systems you can use

WinSCP or Filezilla for example.

4. Run the following command via SSH console: rauc install /srv/my-

update.image.

Charge Control C User Guide

 76

Protection Class: public

5. The update process should start and report progress and success via console messages.

6. Reboot into the new system by running the following command via SSH console:
reboot.

7. Re-login into the new system and delete the file /srv/my-update.image.

11.4 Update via SSH or Serial Console and HTTP or FTP

1. Connect to the board via SSH (e.g. PuTTY) or serial terminal.

2. Backup all your own implementation and configuration files if necessary.

3. Place the update image file on an HTTP or FTP server which is reachable via network by
your Charge Control device.

4. Note the URL of the download. In case authentication is required, you must provide the
credentials in the URL, e.g. http://username:passwd@my-

site.com/update.image.

5. Run the following command via SSH console: rauc install <url>, where you

replace the URL with your actual URL.

6. The update process should start and report progress and success via console messages.

7. After success, reboot into the new system by running the following command via SSH
console: reboot.

11.5 Update via MQTT API

It is possible to trigger a firmware update via MQTT API. This requires that the update image file
is accessible via network download from an HTTP or FTP server. Then this download URL can
be published via MQTT API and the Charge Control firmware will retrieve the download and install
it.

Note that in case authentication is required, you must provide the credentials in the URL,
e.g. http://username:passwd@my-site.com/update.image.

The Charge Control firmware observes and provides the following MQTT topics for its firmware
update process:

Topic Subscribe/Publ
ish

Type Unit Remarks

firmware/update/target/url publishable String - Contains the URL to
download the update file
from. This topic must be
set last as changes will
start the update process.
All other topics will be
latched at this time.
URLs ending with .raucb
are handled as casync
firmware updates, see
discussion below, all
other URL endings are
supposed to be
traditional full-file
firmware updates.

Charge Control C User Guide

 77

Protection Class: public

Topic Subscribe/Publ
ish

Type Unit Remarks

firmware/update/target/max
_trials

publishable Integ
er

- If this integer is set, then
the download will be
automatically retried in
case of download failure.
Values < 1, empty string
or unset value will be
silently used as 1. For
casync firmware
updates, the download is
integral part of the
installation, that means
that the whole
installation is retried.

firmware/update/target/inter
val

publishable Integ
er

secon
ds

If this integer is given,
the interval to wait
between multiple
download retries (if
applicable). Values < 0,
empty string or unset
value will be silently
used as 0. Note, that this
interval is a high-level
view of the update
procedure, i.e. internal
timeouts of a few
seconds and minutes -
for example during
establishing a
connection to the
download server - are
not converted here.

firmware/update/state/actual subscribeable-
only

String - Contains one of the
following strings to signal
the overall firmware
update state: idle,

installing,

install-succeeded,

install-failed,

downloading,

download-succeeded,

download-failed.

See table below.

firmware/update/state/progr
ess

subscribeable-
only

Integ
er

percen
t

Reports the (estimated)
progress of the current
operation in percent. Do
not expect this topic to
contain specific values, it
is provided for
convenience / debug
purposes only (e.g. ease
web GUI).

Charge Control C User Guide

 78

Protection Class: public

Topic Subscribe/Publ
ish

Type Unit Remarks

firmware/update/result/state subscribeable-
only

String - Contains the result of the
last firmware update
operation: succeeded,

failed or empty string

(in case no update was
triggered before (after
boot)).

firmware/update/result/mess
age

subscribeable-
only

String - Contains an English
error message in case
the last update operation
failed, or empty string. In
case max_trials is set to
a value > 1, this topic
might be published after
an unsuccessful
installation attempt - in
contrast to
"firmware/update/result/s
tate" which is only
published after all
attempts failed (or
directly after the first
successful attempt).

MQTT topics for firmware update process

Update State in
firmware/update/state/actual

Description

idle The charging station is not performing firmware update
related tasks. This is the usual state after boot.

downloading The request to install a new firmware was received and the
file is now transferred to the device over network.

download-succeeded The firmware update file was transferred successfully. For
casync firmware updates, the download phase is also
reported - however, the real download is integral part of the
installation and thus not finished yet when this state is
reported.

download-failed The firmware update file transfer failed. A possible reason
may be retrieved with
firmware/update/result/message topic. For casync

firmware updates, this state is only reported for HTTP(S)
URLs when a simple access test to the URL of the
Charging Stack failed (HTTP HEAD request).

installing The transferred file was passed to update framework and
is now signature checked and installed.

install-succeeded The firmware update file was successfully installed by the
framework (no reboot happened yet).

install-failed The firmware update installation failed. A possible reason
may be retrieved with
firmware/update/result/message topic.

MQTT topics for firmware update process

Please note that a reboot of the device does not happen automatically, since the firmware update
installation is run in the background and does not disturb ongoing charging sessions. Your
controlling software should observe the overall situation and decide when the time for a reboot is
best and then trigger the reboot.

Charge Control C User Guide

 79

Protection Class: public

11.6 Update via OCPP

The firmware update via OCPP commands UpdateFirmware and

FirmwareStatusNotification is implemented. Such an update via OCPP automatically

triggers a reboot of the charge point after successfully installing the new firmware and as soon as
an active charging session is finished. The central system is notified about the successful
installation after this reboot of the charge point. Note that the messages
FirmwareStatusNotification are only sent to the central system in case the update has

been triggered via UpdateFirmware (and e.g. not during a USB update).

Implementation details:

• The following download protocols are supported: HTTP, HTTPS, FTP, FTPS

• Any attempt to reset the charge point via OCPP during installation of firmware will be
rejected.

• Any OCPP request for a new firmware update during a running firmware installation will
be confirmed, but ignored otherwise.

• It is recommended to use a reasonable value (e.g. 3) for the OCPP field "retries".

• In case a firmware update has already been scheduled, the old request will be overwritten
by the new one (last writer wins).

11.7 Support for casync based Firmware Updates

As mentioned in the previous sections, the firmware update mechanism uses rauc (https://rauc.io)
as update framework. The traditional method of updating a device is, that a big firmware update
image file is transferred to the device and then installed. However, this approach is sometimes
not ideal, for example when during different firmware releases only few parts changed. To
address such scenarios, rauc itself supports casync based bundles. For more details, please refer
to rauc's own documentation: https://rauc.readthedocs.io/en/latest/advanced.html#rauc-casync-
support. It is obvious that such kind of firmware updates require an established Internet
connection (or a locally available HTTP/FTP server which can be reached by the charging station)
- but the concept does not work for USB pen drive firmware updates.

The casync support in the rauc framework is included since Charge Control firmware version
0.10.0. Older versions do not include the casync executable, thus these versions are not able to
handle casync firmware update files. On casync-enabled Charge Control firmware versions, it is
possible to pass a URL referring to a casync firmware update image directly to the rauc framework
via rauc install <URL>. Please remember that rauc will use the passed URL to construct a

base URL for accessing the smaller chunks. For example the
URL http://example.com/update.raucb would lead to the assumption that all chunks can

be accessed via the base URL http://example.com/update.castr/. Note, that the chunk

store is a whole directory with many small files inside, not a simple file - the file extension like
directory naming might suggest this.

https://rauc.io/
https://rauc.readthedocs.io/en/latest/advanced.html#rauc-casync-support
https://rauc.readthedocs.io/en/latest/advanced.html#rauc-casync-support

Charge Control C User Guide

 80

Protection Class: public

To fully support casync based firmware updates also in the Charge Control stack APIs, that
means via OCPP (where applicable) and via MQTT API, some points must be taken into
consideration. Firmware update files shipped by chargebyte traditionally use the file extension
.image. Such images are downloaded first by the Charge Control stack and then forwarded as

a local file to the rauc framework. This approach allows to have more control over the download
itself, e.g. to inform the OCPP backend about the current progress or download failures etc.
However, this approach fails for casync based firmware updates, since rauc (and casync under
the hood) must know the original URL to access the chunk store (as mentioned above). To decide
which "down-passing to rauc approach" must be used by Charge Control stack and this without
downloading and inspecting the file before a simple naming convention is assumed by the Charge
Control stack: URLs ending with .raucb are assumed to be casync firmware update files, while all
other endings are expected to be traditional ones. This is in alignment to rauc's internal
expectation to construct the base URL for the chunks where the suffix .raucb is replaced with

.castr (as mentioned above). It is recommended for customers to follow this naming

convention.

11.8 Rollback mechanism

11.8.1 Introduction

The internal storage of Charge Control devices is subdivided into several partitions. This is used
to form a redundant setup with A and B system in which one system is active and running while
the other one is inactive. Thus it is possible to update the inactive system in background without
interrupting the main operation of the system. After a firmware update was performed and the
system has booted into the new firmware, the previously active system still exists - however,
inactive now. It will be used for later firmware updates, but immediately after a firmware update
was performed, it serves as fallback option. This is possible since it can be safely assumed, that
this previously active system is still in a recent state or at least not in a worse condition than
before then firmware update.

The process of using this previous system as fallback after a firmware update, is called rollback
mechanism. Several software components must work together to provide this feature. The main
purpose is to ensure that after a firmware update was installed, all software components are
running smoothly, even with the restored/kept configuration files of the previous system.

11.8.2 How it works

As mentioned, the filesystem architecture of Charge Control devices consists of several partitions.
During manufacturing process, two of these partitions are flashed with the same firmware version
of the charging software - and would be both bootable per se. After initial starting of a board, only
the first partition (rootfs A) is activated and is used by the boot loader to complete the boot
process. When this boot process passed the point at which it considers itself being in a known-
to-be-good state, it disables the other partition (rootfs B).

The rollback mechanism is only activated while performing a software update of Charge Control
devices. After starting of the update process the update image file will be installed to the other,
currently deactivated partition. The currently booted rootfs filesystem stays unaffected while
performing the update. As soon as the update is successfully installed, the currently booted
partition is deactivated. It depends on the used update method when a reboot is actually
performed, e.g. during update from USB pen drive this reboot happens immediately. Now the
bootloader is responsible to boot the partition with the new software image. While the board is
booting, the green led (LED 1 on Charge Control C and LED 3 on Charge Control M) is blinking
and it stops blinking when the update process is completed. Then, after successfully starting the
charging software, the rollback mechanism is deactivated and the currently installed software
version is notified with MQTT topic ci/global/version/charging_software. The charging

software is now running and operational.

Charge Control C User Guide

 81

Protection Class: public

But in case something went wrong during the update, e.g. some software component does not
come up or behave as expected, then the charging software does not mark this boot process as
successful. The included watchdog functionality will detect such a misbehavior and trigger a
reboot of the whole device. It is tried up to 3 times to get the new firmware running. After the last
trial failed, the bootloader will switch back to boot the previous system again.

As noted, a successfully booted new firmware will disable the rollback mechanism. On the other
hand, in case the previous system is booted again - and it can be assumed that this system boots
also successfully - this previous system will also disable the rollback mechanism. At the end, the
rollback mechanism is automatically disabled after a firmware update was installed or the rollback
was performed. In any case, the device runs with working firmware which is the base for normal
operation and also later firmware updates.

However, it is worth to remember that the partitions are not synchronized. Thus if one rootfs is
customized, by e.g. integrating custom software applications, the other partition stays unaffected.
Only the configuration files, stored in /etc/secc on EVSE side or /etc/evcc on EV side, as

well as custom network device configurations, are migrated during installation of an update. This
point must especially be considered before performing a standard software update from
chargebyte. In the case of customized file system contents, it is recommended to create a
customized firmware image update which is based on the standard update image. For more
information regarding the creation of own firmware image updates please contact the chargebyte
support.

11.8.3 Performing the rollback mechanism manually

In some situations, as in case to rescue data of the other partition after a software update, it might
be necessary to perform a manual rollback to the other partition.

The Charge Control device uses the rauc update framework for updating the device with a new
firmware version and managing the boot partitions. Before using rauc command line tool it is
necessary to establish a connection via SSH or Debug UART. After the connection is established
the status of the by rauc managed partition can be retrieved by using the rauc status console

command. The following figure shows the console output of the rauc status command. Here

the board - a Charge Control M board in this example, but the same priniciples also apply to other
products of the Charge Control family - was booted from the first partition “rootfs.0” (A).

Console output of the "rauc status" command

The rollback to the other partition can now be performed by using the command rauc status

mark-active other. The console output should now look like the following figure.

Charge Control C User Guide

 82

Protection Class: public

Console output of the "rauc status mark-active other" command

After rebooting of the board with command reboot the board should be successfully booted on

the other partition. To revert to the initial partition, just repeat this process.

11.8.4 Development tools

During development it may be useful to access/mount the inactive partition. Then it is required to
first determine the inactive partition using rauc command line tool. To simplify things, a helper
shell script is included in the firmware which is called mount-other-rootfs. It takes one

command line argument as parameter, that is, a target directory used as mountpoint for the
inactive root filesystem.

Example: mount-other-rootfs /mnt

Note, that this helper script does not modify any rauc status information regarding this slot.

Charge Control C User Guide

 83

Protection Class: public

12 Charging Stack Initialization

The Charging Stack initializes itself after device boot.

Service files for the stack daemons are located in:

/lib/systemd/system/*.service

Service files are referenced with symlinks from:

/etc/systemd/system/multi−user.target.wants/

If required, it is possible to manage individual stack components with systemctl.

13 Device Access

There are different possibilities to access the device for configuration purposes.

The username- password combination required for login is:

Username Password

root zebematado
Table 44 Device Access

This is a generic password, so it is required to be changed by the customer!

13.1 Debug UART

Use the following settings to connect to the debug UART:

Setting Value

Baud rate 115200

Data bits 8

Stop bits 1

Parity None

Flow control None
Table 45 Settings to connect to the debug UART

13.2 SSH

Charge Control C is shipped with SSH (Secure Shell) service running on the bridge interface, i.e.
Ethernet and mains powerline interface (only Charge Control 300). It allows you to connect to
Charge Control C securely and perform Linux command-line operations. The SSH service is
listening on the well-known port number for SSH: TCP port 22.

13.3 Website

Charge Control C is running a web server to provide a web frontend to configure the device and
control various aspects of the charging stack. The web server is listening on the standard TCP
Port 80. The web frontend can be accessed via the Ethernet interface and/or mains powerline
interface (only Charge Control 300). To access it, simply put the device’s IPv or IPv6 address
into your browser’s address bar. Since the Charge Control C devices ship with DHCP enabled,
you might need to access your router’s web frontend first to determine the IP address given to
your Charge Control C board. Alternatively, you might use the static fallback IP as documented
in the section Network Configuration.

Charge Control C User Guide

 84

Protection Class: public

14 Configuration

The Charge Control stack is built as an application on top of a Linux system. Several software
components interact with each other and rely on various configuration files.

The Charge Control configuration files are described in the following section. Devices are shipped
with a default configuration as shown in Configuration Hardware Parameter customer.json and
Configuration Software Parameter customer.json. Several configuration files which are present
on regular Linux systems also influence stack behavior.

chargebyte is not liable for a standard compliant charger configuration.

’Application Note 9 - Charge Control C - Digital Input/Output configuration’ gives a detailed
overview about how to configure digital input and output of the product.

14.1 Charging Stack Configuration Files

configuration file description preserved during
update

/etc/secc/customer.json defines most of the charging stack
behavior

yes

/etc/secc/leds.json defines the LED behavior for the digital
outputs

yes

/etc/secc/rotaryencd.json defines the rotary encoder switch
meaning

yes

Table 46 Charging stack configuration files

• These JSON files use comments to describe the keys’ functions and their possible
values. (Comments are a non-standard extension to JSON)

• Please ensure that, when editing these files, correct JSON syntax (plus the comments)
is adhered to.

• In case of modifying of the customer.json file, please consider the maximum size of the
values of the JSON keys. Otherwise, some values might be imported incorrectly or
truncated. E.g. in case the maximum size of "ocpp/chargePointVendor" is exceeded, it
will be transmitted truncated over OCPP.

• The port[0] syntax refers to the first JSON object in the port[] array of the configuration
file, configuring the first charge port of the station.

Charge Control C User Guide

 85

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

Parameter Description Type Default OCPP

ports[0]/pluggable Must be set by the charging station
manufacturer to indicate to the
charging stack whether a fixed
charging cable is attached to the
charging station, or whether the
charging station has a socket and the
car driver connects his private cable.
In case of "true", i.e. a socket is
installed, the charging station must
also connect the Proximity Pilot pin of
the socket because this is used to
determine the maximum current limit
which is allowed by the cable.

Boolean (true =
socket, false = fixed
cable)

true yes

ports[0]/pp/cable_current_limit In case of a fixed cable, the charging
station manufacturer must configure
the rating of the used charging cable
in this parameter. It must contain the
maximum current in Ampere which is
allowed by the cable vendor. Enter
the single value, i.e. the maximum
current per phase - not the summed
limit for all phases.
In case of "pluggable = true", this
configured limit is ignored because
the value is automatically determined
by reading the Proximity Pilot.

Integer 6 yes

ports[0]/evse_current_limit This parameter defines the charging
station's internal maximum cable
rating in Ampere. It must be
configured by the charging station
manufacturer and contain a single
value, i.e. the maximum current per
phase - not the summed limit for all
phases.

Integer 6 yes

Charge Control C User Guide

 86

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

ports[0]/failsafe_current_limit With this parameter the charging
station manufacturer can configure a
maximum current limit after initial
start-up of the charging station. This
value affects the computation of the
offered overall current limit only as
long as a current limit was not
transmitted via OCPP or via a
dynamic current limit (MQTT).
The aim of this parameter is, that a
load management application can
make safe assumptions about the
start-up behavior of the charging
station during reboot phase and until
communication is restored again.
If this parameter is configured to "-1",
this failsafe current limit is not
applied.

Integer -1 yes

ports[0]/contactor/feedback_type defines the logic behind the contactor
feedback (Relay 1).
Note: Because of safety reasons it is
strongly recommended to use a
contractor with feedback pin. If no
feedback is configured the charging
software is not able to check whether
the contactor is truly opened or
closed.

String ("nc" =
normally close, "no"
= normally open, "none" = no
feedback)

"no" yes

ports[0]/ventilation/enable enables external ventilation control
(Relay 2)

Boolean false yes

ports[0]/ventilation/control defines the ventilation control mode.
The ventilation can be controlled
internally by the charging software or
externally over customer software via
MQTT topics. Precondition: Config
parameter for external ventilation
control must be enabled.

String
("internal",
"external")

"internal" yes

Charge Control C User Guide

 87

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

ports[0]/ventilation/feedback_type defines the logic behind the contactor
feedback (Relay 2).
Note: Because of safety reasons it is
strongly recommended to use a
contractor with feedback pin. If no
feedback is configured the charging
software is not able to check whether
the contactor is truly opened or
closed.

String ("nc" =
normally close, "no"
= normally open, "none" = no
feedback)

"no" yes

ports[0]/emergency_alarm/enable enables emergency alarm monitoring Boolean false yes

ports[0]/emergency_alarm/gpio defines GPIO line connected to
emergency contact

Integer 121 yes

ports[0]/emergency_alarm/polarity defines GPIO polarity connected to
emergency contact

String ("active_low",
"active_high")

"active_high" yes

ports[0]/rcd_monitor/enable enables RCD
monitoring

Boolean false yes

ports[0]/rcd_monitor/gpio defines GPIO line connected to the
RCD feedback

Integer 122 yes

ports[0]/rcd_monitor/polarity defines GPIO polarity connected to
the RCD feedback during normal
operation, i.e. when no fault is
present
Example: When the attached
RCM/RCD provides 0 V to the
board's
digital input pin in normal mode and it
provides e.g. 12 V when a
fault condition is signaled, then
"active_low" must be used here.

String ("active_low",
"active_high")

"active_high" yes

ports[0]/rcd_monitor/test_gpio defines GPIO line connected to the
RCD test trigger pin.
When RCD monitoring is disabled,
RCD test feature is not available.
When this key is set to '-1', the RCD
test feature is disabled, while RCD
monitoring is still enabled.

Integer 87 yes

Charge Control C User Guide

 88

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

When this key is commented or
missing, the default value is used.

ports[0]/rcd_monitor/test_gpio_polarity defines GPIO polarity connected to
the RCD test trigger during normal
operation, i.e. when no fault is
present.
When this key is commented or
missing, the default value is used.
This key is only used when RCD test
feature is enabled.

String ("active_low",
"active_high")

"active_high" yes

ports[0]/rcd_monitor/test_trigger_time defines the duration in milliseconds
how long the test GPIO is driven
active to start a self-test of the RCD.
(see RCD monitoring and testing)
When this key is commented or
missing, the default value is used.
This key is only used when RCD test
feature is enabled.

Integer (1 - 5000) 815 yes

ports[0]/rcd_monitor/test_check_tripped_time defines a delay in milliseconds when
the implementation looks at the
feedback signal after the RCM test
was started. The duration here
counts from the start of the RCM test
request, i.e. the time when the test
trigger output pin changed from
inactive to active. (see RCD
monitoring and testing)
When this key is commented or
missing, the default value is used.
This key is only used when RCD test
feature is enabled.

Integer (1 - 5000) 810 yes

Charge Control C User Guide

 89

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

ports[0]/rcd_monitor/test_check_normal_time defines a delay in milliseconds when
the implementation looks finally at the
feedback signal to ensure that the pin
is in its original state again. This
duration is measured from the time
when the test trigger output pin
changed back to usual state. (see
RCD monitoring and testing)
When this key is commented or
missing, the default value is used.
This key is only used when RCD test
feature is enabled.

Integer (1 - 5000) 410 yes

ports[0]/plug_lock/type selects the plug lock
motor type

String
("KUESTER-02S",
"KUESTER-04S",
"EV-T2M3S-E-LOCK12V",
"EV-T2M3SM-E-LOCK12V",
"HELLA-MICRO-ACTUATOR-
1",
"WALTHER-WERKE-
9798999009",
"INTRAMCO-
603205", "SCAME-
200.23260BS", "SCAME-
200.23261BS","SCAME-
200.23261BP", "SCAME-
200.23261BL")

"EV-T2M3S-E-
LOCK12V"

yes

ports[0]/meter/enable enables metering support (required
for OCPP)

Boolean false yes

ports[0]/meter/port defines UART interface to the meter String "/dev/ttymxc0" yes

Charge Control C User Guide

 90

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

ports[0]/meter/protocol Specifies the meter’s Modbus
protocol to use.

Special note for Eastron support:
When just using "eastron", the
implementation tries to auto-detect
the connected meter. However, this
only works for newer models, that
means for models which already
have a newer meter firmware which
fills the Meter Code register. If you
have meters with older firmware, you
can force the usage of a specific
meter model by giving the
corresponding specific model type in
this string.

String ("dzg",
"eastron", "eastron,sdm230",
"eastron,sdm630",
"eastron,sdm72dm-v1",
"eastron,sdm72dm-v2",
"elecnova,dds1946",
"elecnova,dts1946", "gavazzi",
"klefr", "eem-350-d-mcb", "abb",
"iskra", "socomec", "sunspec")

"dzg" yes

ports[0]/meter/baudrate baud rate of Modbus protocol Integer 9600 yes

ports[0]/meter/parity parity of Modbus protocol String ("none",
"odd", "even")

"even" yes

ports[0]/meter/address force usage of a given Modbus
address of the meter

Integer (1 - 247) depends on
protocol

yes

ports[0]/recloser/enable enables RCD recloser support Boolean false yes

ports[0]/recloser/port defines UART interface to the
recloser device

String ”/dev/ttymxc0" yes

ports[0]/recloser/protocol specifies the recloser’s Modbus
protocol

String ("geya”) "geya" yes

ports[0]/recloser/baudrate baud rate of Modbus protocol Integer 9600 yes

ports[0]/recloser/parity parity of Modbus protocol String ("none",
"odd", "even")

"none" yes

ports[0]/recloser/address force usage of a given Modbus
address of the recloser

Integer (1 - 247) depends on
protocol

yes

ports[0]/rfid/enable enables RFID support Boolean false yes

ports[0]/rfid/port defines UART interface to the RFID
reader

String ”/dev/ttymxc0" yes

ports[0]/rfid/protocol specifies the RFID protocol String ("Stronglink”, "stronglink-
modbus", "smarttec-mcr-legic",
"mqtt”)

"Stronglink” yes

Charge Control C User Guide

 91

Protection Class: public

Hardware Configuration (found in file /etc/secc/customer.json)

ports[0]/rfid/baudrate baud rate of RFID reader protocol Integer 9600 yes

ports[0]/rfid/parity parity of RFID reader protocol String ("none",
"odd", "even")

"none" yes

ports[0]/rfid/address force usage of a given Modbus
address of the RFID reader

Integer (1 - 247) unset, i.e.
protocol
dependent
default applies

yes

ports[0]/rfid/remote_ports This item can be used to configure
remote destinations for the RFID
reader implementation when a single
charging station case encloses
several Charge Control C boards for
individual charging sockets.
This "remote_ports" key is an JSON
array, which consists of JSON
objects whereas each object defines
one remote destination. Each of
these JSON objects must define the
key "uri", otherwise the object is
ignored.
The current implementation supports
up to three remote objects, surplus
objects are silently ignored. Note,
that even array items without "uri" key
counts in this regards.

Array of Objects one example
item with
commented out
"uri" key, which
in turn renders
this item
inoperable

yes

ports[0]/rfid/remote_ports[]/uri This parameter takes an URI which
defines for this remote destination,
how the RFID reader implementation
should connect to the remote MQTT
broker.
Example: mqtt://192.168.0.1:9001
The current implementations
assumes, that charging port 0 is used
at the destination MQTT broker.

String none yes

io/digital_input_threshold_voltage Specifies the threshold voltage for
the digital inputs in mV

Integer (0 - 12000) 6000 yes

Table 47 Configuration of hardware parameters in customer.json file

Charge Control C User Guide

 92

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

Parameter Description Type Default OCP
P

ports[0]/hlc_protocols Specifies the supported high
level communication protocols

String ("urn:iso:15118:2:2013") "urn:iso:15118:2:20
13"

yes

ports[0]/always_accept_cp_state_d Indicates whether an EV which
requests CP state D
(ventilation) should always be
accepted

Boolean false yes

ports[0]/force_wake_up Indicates whether a legacy EV
should be woken up after
successful authorization by
imposing O V on the CP

Boolean false yes

ports[0]/wake_up_after_timeout Indicates whether a legacy EV
should be woken up after a
timeout of 30 s by imposing O
V on the CP

Boolean false yes

ports[0]/charging_type Specifies the allowed charging
types during a charging
session. For IEC 61851-only
charging the parameter must
be configured to "basic". For
ISO 15118-only charging the
parameter must be configured
to "highlevel". A combination of
both charging types is currently
not supported. If
"basic+fake_highlevel_dc" is
configured, a faked HLC
session is started to retrieve
MAC address and V2G DC
parameters and continues with
a basic charging session.

String ("basic”,
"highlevel", "basic+fake_highleve
l_dc")

"basic" yes

ports[0]/user_authentication Specifies the authentication
method of the user

String ("free”, "ocpp", "mqtt", "key-
switch")

"free" yes

Charge Control C User Guide

 93

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

Possible values:
"free”: free charging, no user
authentication required
"ocpp": user authentication
over OCPP
"key-switch": user
authentication over a key-
switch
"mqtt": user authentication via
MQTT topic
TOPIC_AUTHORIZATION_ST
ATUS

ports[0]/highlevel_authentication_mode Specifies the authentication
mode for the high level
charging session

String ("eim") "eim" yes

ports[0]/tls_security Controls how to handle
encrypted communication to
the EV during high level
charging

String ("prohibit”,
"allow”, "force”)

"prohibit” yes

ports[0]/evse_id Provides the EVSEID of the
actual charger

String[37] ”DE*INT* ECH
123 567890”

yes

ports[0]/meter/publish_settings/timer Defines the MQTT publish
interval of metering data in
seconds

Integer 30 yes

Charge Control C User Guide

 94

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

fake_highlevel_dc_vendors Vendor specific configuration of
the fake_highlevel_dc

charging mode, see
ports[0]/charging_type

above. Keys in this object are
the names of vendor sub-
objects which allow to fine-tune
the fake HLC session and the
switching to the usual basic
charging. See configuration
details for the example vendor
"MyCar" below. The factory
shipped default configuration
contains settings for vendors
Tesla and Volkswagen which
can be used as a blue print for
customer specific additional
settings.

Object Predefined keys for
"Tesla" and
"Volkswagen"

yes

Charge Control C User Guide

 95

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

fake_highlevel_dc_vendors/MyCar/oui This configuration list contains
the vendor OUIs
(Organizationally Unique
Identifier) and/or MAC address
which are checked in order
against the actual MAC
address of the connected EV.
MAC addresses themselves
consist of 6 octets. The first 3
octets of the MAC address are
the OUI which usually stands
for a given vendor. The
remaining 3 octets are
asssigned individually to each
EV. Often vendors have
multiple OUIs in parallel since
the amount of number space in
the last 3 octets is limited. This
is why here a configuration of a
list is possible. When an EV is
connected, all these OUIs are
search for a match and this
determines which vendor sub-
object is used for the fine-
configuration of the fake DC
session. If no match is found,
compiled-in default values are
used.
The list can contain arbitrary
long strings which are
compared against the start of
the MAC address obtained
during the charging session. It
is also possible to configure the
complete 48 bit long MAC
address.

Array of Strings vendor specific yes

Charge Control C User Guide

 96

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

Two-digit hex numbers must be
separated by a colon.
For example for Tesla, the list
could look like: "98:ED:5C",
"4C:FC:AA", "54:F8:F0",
"0C:29:8F", "DC:44:27:1"
Here this vendor has three
usual 24-bit OUIs and one 28-
bit OUI (MA-M).

fake_highlevel_dc_vendors/MyCar/hlc_terminat
es_after

Configuration of time when a
faked DC HLC session should
be terminated for a given
vendor.
Possible values are:
"MAC" - after receiving of the
EV MAC address
"SoC" - after receiving of the
State of Charge value

String ("MAC", "SoC") "SoC" yes

fake_highlevel_dc_vendors/MyCar/switch_meth
od

Configuration of the switch
method between the faked DC
HLC session and basic AC
PWM charging for a given
vendor.
Please contact support for
detailed information.
Possible values are: 1-4

Integer 1 yes

ocpp/enable Enables the OCPP client Boolean false no

ocpp/uri Identifies the charge point
specific URI of the backend’s
WebSocket service (must begin
with lowercase ws:// or wss://)

String no

ocpp/verifyCert Indicates whether to verify the
Secure WebSocket server’s
TLS certificate (only valid for
secure connections, not
recommended to disable)

Boolean true no

Charge Control C User Guide

 97

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

ocpp/rfidStopTransaction Indicates whether a re-
authorization from RFID ends a
charging session

Boolean true yes

ocpp/rfidRequiresEvPresent Indicates whether an EV must
be present before RFID
authentication

Boolean false yes

ocpp/chargePointModel Identifies the model of the
Charge Point

String[20] no

ocpp/chargePointVendor Identifies the vendor of the
Charge Point

String[20] no

ocpp/chargePointSerialNumber Identifies the serial number of
the Charge Point

String[25] no

ocpp/ftpTryTLSUpgrade Whether to try upgrading to
SSL/TLS when using FTP for
downloading a firmware update
file or during an OCPP
getDiagnostics handling, if the
corresponding FTP server
offers it.

Boolean false yes

ocpp/AllowOfflineTxForUnknownId Whether to allow transactions
for unknown id tags while being
offline from CS

Boolean false yes

ocpp/allowTxWithInvalidTime Indicates whether a valid time
is required for a transaction to
be started.

Boolean false yes

ocpp/AuthorizationCacheEnabled Indicates whether to use the
authorization cache

Boolean true yes

Charge Control C User Guide

 98

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

ocpp/AuthorizeRemoteTxRequests If AuthorizeRemoteTxRequests
is true, the idTag received with
the
RemoteStartTransaction.req
will be checked against the
Local Authorization List,
Authorization Cache and/or
with an Authorize.req against
the backend. A transaction will
only be started after
authorization was obtained.
If AuthorizeRemoteTxRequests
is false, then a transaction for
the given idTag is started
immediately and a
StartTransaction.req is sent to
the backend. The backend will
then check the authorization
status of the idTag when
processing this
StartTransaction.req.

Boolean false yes

ocpp/calibrationLawFormat Configures the output format
for signed meter values.

String ("ocmf,plain", "ocmf,hex") "ocmf,plain" yes

ocpp/ClockAlignedDataInterval Specifies (in seconds) the size
of the clock-aligned data
interval for a whole day

Integer (0, 10 -
86400)

0 yes

ocpp/ConnectionTimeOut Specifies (in seconds) until
when the EV must be
connected after a successful
authentication

Integer (0, 10 -) 60 yes

ocpp/LocalAuthListEnabled Indicates whether the local
authorization list is enabled

Boolean true yes

ocpp/LocalPreAuthorize Indicates whether to skip
OCPP authorize request before
start a transaction

Boolean true yes

Charge Control C User Guide

 99

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

ocpp/LocalAuthorizeOffline Indicates whether to allow
transactions for locally-
authorized while being offline

Boolean true yes

ocpp/MeterValueSampleInterval Indicates (in seconds) the
sampling interval for metering
data

Integer (0, 10 -
86400)

60 yes

ocpp/MeterValuesSampledData Specifies the periodically
sampled measurands to be
included in a MeterValues.req

Array of Strings
("Energy.Active.
Import.Register”,
"Power.Offered"),
see section "OCPP Measurand
Support" for details

["Energy.Active.
Import.Register”]

yes

ocpp/StopTransactionOnInvalidId Indicates whether to send a
StopTransaction for a non-
accepted StartTransaction

Boolean true yes

ocpp/StopTxnSampledData Specifies the sampled
measurands to be included in
the StopTransaction.req

Array of Strings
("Energy.Active.
Import.Register”),
see section "OCPP Measurand
Support" for details

[] yes

ocpp/TransactionMessageAttempts Specifies how often a message
should be repeated in case CS
fails to process it

Integer 3 yes

ocpp/TransactionMessageRetryInterval Specifes the duration (in
seconds) until a message is
repeated to the CS

Integer 30 yes

ocpp/useAsTimeSource Indicates whether to use the
time of day given by the Central
System as system time

Boolean true yes

Charge Control C User Guide

 100

Protection Class: public

Software Configuration (found in file /etc/secc/customer.json)

ocpp/bootNotificationOnReconnect Some Central Systems identify
the charge point via
BootNotification instead of an
URI. Enabling this option
enforces a BootNotification
after a Websocket reconnect in
order to help these Central
Systems. Since this is non-
conform behavior to OCPP
1.6J, this option should be only
enabled if required by the
backend.

Boolean false yes

Table 48 Configuration Software Parameter customer.json

Hardware Configuration (found in file /etc/secc/leds.json)

Parameter Description Type Default

leds[0]/gpios defines the digital output GPIOs
which are connected to the LEDs (
1st for red, 2nd for green, 3rd for
blue)

Array of Integer [3] [84]

software configuration

leds[0]/behaviors[]/condition specifies under which condition this
behavior takes effect

String ("init", "updating", "auth_pending", "auth_accepted",
"auth_rejected", "ready", "deactivated", "reserved", "connected",
"charge_request”, "ventilation_request", "charge_1", "ventilation_1",
"error", "failure")

leds[0]/behaviors[]/mode specifies the LED mode of this
behavior (blink fast = 100 ms on /
100 ms off, blink slow = 1 s on / 1 s
off)

String ("solid", "blink_slow", "blink_fast")

leds[0]/behaviors[]/color specifies the LED color of this
behavior (black = off)

String ("black", "white", "red", "green", "blue", "cyan", "yellow",
"magenta")

leds[0]/behaviors[]/duration specifies the duration of this
behavior in 1/100 ms (0 =
permanent)

Integer 0

Table 49 Configuration Parameter leds.json

Charge Control C User Guide

 101

Protection Class: public

Configuration (found in file /etc/secc/rotaryencd.json)

Parameter Description Type

rotary_switch_1[0]/phase_count defines the phase count for setting 0 on rotary switch SW2 Integer (1 , 3)

rotary_switch_1[0]/current_limit defines the grid current limit in Ampere for setting 0 on rotary switch SW2 Integer (1 .. 10000)

rotary_switch_1[1]/phase_count defines the phase count for setting 1 on rotary switch SW2 Integer (1 , 3)

rotary_switch_1[1]/current_limit defines the grid current limit in Ampere for setting 1 on rotary switch SW2 Integer (1 .. 10000)

...

rotary_switch_1[15]/phase_count defines the phase count for setting F on rotary switch SW2 Integer (1 , 3)

rotary_switch_1[15]/current_limit defines the grid current limit in Ampere for setting F on rotary switch SW2 Integer (1 .. 10000)
Table 50 Configuration Parameter rotaryencd.json

Charge Control C User Guide

 102

Protection Class: public

14.2 Network Configuration

The default Charge Control C network configuration creates a virtual Ethernet bridge br0

consisting of the wired Ethernet interface eth0 and -if available- the USB dongle for mobile

broadband communication (see next section).

This bridge interface ships with DHCP enabled by default, plus a static fallback IPv4 address in
the AutoIP network range (see RFC3927) to ease access in direct connections with Microsoft
Windows™ PCs. The MAC address of the bridge interface corresponds to the MAC address of
the wired Ethernet interface, is board-specific and is contained in the 2D barcode within the device
label.

For network configuration the systemd’s networkd is used as background service. For details,
please refer to https://www.freedesktop.org/software/systemd/man/systemd-networkd.html. The
platform specific factory default configuration files can be found in the firmware’s root filesystem
below /lib/systemd/network.

Customer can control network settings within a limited range: it is possible to switch between
DHCP and a static IPv configuration for the bridge interface via Charge Control’s stack
configuration file customer.json, see following table. Network setups beyond the mentioned

scenarios must be individually configured by customer. This is possible by turning the Charge
Control’s network configuration generation off. Then it is up to customers' firmware and/or
additional configuration files to fully control network devices/settings etc. Customers are
recommended to use the factory default files in /lib/systemd/network as templates and

replace the files in this location when configuration should be modified as part of customer specific
firmware builds, i.e. customer wants to create a firmware with modified factory default settings.
When only a runtime change is intended for individual boards, then such board and customer
specific network configuration files must be placed in /etc/systemd/network directory. This

directory is also preserved during the firmware update process.

Network Configuration (found in file /etc/secc/customer.json)

Parameter Description Type Default OCPP

network/skip_configuration Set to true if network settings
should not be managed by
Charge Control stack. Use this
when a special (unsupported)
setup is required and
configuration files for systemd-
networkd are shipped/generated
by customer software. Note that
all other JSON types or if this
option is missing, this is
considered as false and the
configuration is generated on a
best-effort base.

Boolean false yes

network/ipv4/dhcp If set to true, a DHCP client is
enabled on the interface. When
set to false, you most likely want
to provide a static address (see
below). If this config option is
missing or is not a JSON boolean,
then it is considered true.

Boolean true yes

network/ipv4/address When DHCP is not enabled, a
static IPv4 address should be
specified here with network prefix
len appended (aka CIDR
notation).
Example: 192.168.178.2/24

String none yes

https://www.freedesktop.org/software/systemd/man/systemd-networkd.html

Charge Control C User Guide

 103

Protection Class: public

network/ipv4/gateway The IPv4 address of the standard
gateway.
Example: 192.168.178.254

String or
Array of
Strings

none yes

network/ipv4/dns The IPv4 address of a DNS
server.
Example: 192.168.178.254

String or
Array of
Strings

none yes

network/ntp If a dedicated NTP server should
be used (e.g. when no NTP
server is provided via DHCPv4)
and/or the platform’s default
NTP servers are not reachable
(e.g. when traffic is filtered). It
should normally not be necessary
to specify this setting since
system defaults are carefully
chosen to support a wide range of
setups.

String or
Array of
Strings

none yes

Table 51 Network Configuration Parameters in customer.json

Note: When upgrading from a Debian-based firmware to a Yocto-based one, the IP address
obtained via DHCP may change due to the use of a different DHCP client.

The mains powerline interface eth2 is always configured as DHCP client. In case DHCP fails on

this interface, there is no fallback to a link-local address since this would result in a network
address collision with the wired Ethernet interface.

While the Control Pilot interface could also be configured using systemd-networkd overrides, we
do not recommend changing the factory settings nor should it be necessary at all.

Board Interface Linux Interface

Virtual Bridge br0
Table 52 Board and Linux Interface

MAC address1 00:01:87:XX:XX:XX

Fallback IPv4 address 169.254.12.53

IPv6 address1 fe80::xyxx:xxff:fexx:xxxx
Table 53 MAC and IPv6 address

1: MAC address and IPv6 address are device specific

MAC to IPv6 calculation rules:

IPv6 address is calculated out of the device specific MAC address.

MAC address XX:XX:XX:XX:XX:XX

IPv6 Link Local address fe80::xyxx:xxff:fexx:xxxx
Table 54 MAC to IPv6 calculation rules

Where y = OR 2. Furthermore ’ff:fe’ is inserted and ’fe80::’ prepended.

’y = OR 2’ means inverting the 2nd bit from the right.

Example:

MAC address 00:01:87:12:34:56

IPv6 address fe80::201:87ff:fe12:3456
Table 55 MAC and IPv6 address example

14.2.1 USB internet dongles

To easily connect Charge Control devices to the internet, USB internet dongles may be used. A
list of supported USB internet dongles can be found in section USB.

Charge Control C User Guide

 104

Protection Class: public

These USB dongles provide full mobile internet router functionality and thus can be shared by
multiple Charge Control devices. In technical terms, these USB dongles provide a virtual Ethernet
interface with DHCP server, default gateway etc. Charge Control C firmware automatically
includes this virtual Ethernet interface in the bridge br0 when the USB internet dongle is
connected to the device; and when still configured for DHCP (factory default), it acquires IP
address, DNS and router settings from the USB internet dongle automatically.

Since the virtual Ethernet interface is part of the bridge, devices connected via wired Ethernet can
also use and share this internet uplink. These devices also only need to acquire their IP
configuration via DHCP. This way it is also possible for technical staff to access the USB dongle
firmware’s web frontend, e.g. for configuring roaming options or similar.

Another typical scenario is to attach the USB internet dongle to one Charge Control device, and
then attach additional Charge Control devices and/or other network devices to the Ethernet port.
A standard Ethernet network switch can be used if more than one additional device needs to be
connected.

The APN settings required for the mobile internet connection can be configured using the Charge
Control’s customer.json configuration file. If configured, the Charge Control firmware checks the
current USB dongle settings and updates them if required. This is particularly useful to deploy
e.g. APN configuration changes via OCPP. When multiple Charge Control devices share one
mobile internet connection, then all devices check the APN settings. However, only the Charge
Control device which is directly connected to the USB internet dongle will update the settings, all
other devices will only warn about the (possibly) outdated configuration.

Additionally, a firmware component tries to obtain ICCID and IMSI settings from the USB internet
dongle’s firmware. This component is enabled as soon as the APN settings contain an APN name
and when the USB mobile internet stick is not directly connected to the Charge Control device -
it is then assumed to be an "enslaved" Charge Control device which uses a shared uplink
connection. When available, the ICCID and IMSI information is then included as parameters in
OCPP communication.

Summary of the requirements for using such a USB internet dongle as upstream internet
connection:

1. Supported USB internet dongle

2. SIM card

3. APN configuration settings (if the default settings of the SIM card do not apply - please
contact your mobile operator for details)

Steps to do during deployment:

1. Ensure that your Charge Control device is configured with correct APN settings in
customer.json, see table below.

2. Insert the SIM card into the USB internet dongle.

3. Connect the USB internet dongle to the Charge Control board.
Hint: A short USB extension cord might help in case the USB internet dongle is too big.
Please also note, that the Charge Control’s USB port can only provide limited power.
Modern USB internet dongles may draw more power than allowed and thus will fail to
work stable. The usage of a self-powered USB hub between Charge Control and USB
internet dongle is recommended in this case.

4. Connect a notebook to Charge Control’s wired Ethernet interface and access the USB
internet dongle’s web frontend with your browser (e.g. 192.168.8.1 for Huawei E3531)

a. Remove the SIM card’s pin protection

b. Enable auto reconnect feature

c. Enable roaming if necessary

Charge Control C User Guide

 105

Protection Class: public

Mobile Uplink Configuration (found in file /etc/secc/customer.json)

Parameter Description Type Default OCPP

uplink/apn_name APN to use. Contact your mobile internet
provide for this setting. This setting is
required to enable mobile connection
related behavior, e.g. querying
IMSI/ICCID from USB mobile device. If
not required or desired (also see notes
above), use empty string or do not give
at all.

String <empty> yes

uplink/apn_username APN username to use. If not required,
use JSON null value or do not give at all.

String Null yes

uplink/apn_password APN password to use. If not required,
use JSON null value or do not give at all.

String Null yes

Table 56 Mobile Uplink Configuration Parameters in customer.json

14.3 OCPP Root Certificate Authority Keys / Certificates

OCPP communication with a backend provider might be encrypted using a TLS connection. The
backend service provider usually provides configuration details, i.e. whether TLS is required or
not, indicated by a URI using the wss: scheme. If TLS is required, the OCPP server presents an

X.509 certificate to the device, which may be signed by a "well-known" Root Certificate Authority,
or not. Well-known Root Certificate Authority in this context means that its root certificate is known
by common browsers. On Linux systems, such certificates are usually packaged in a package
named "ca-certficates” or similar. Charge Control firmware also includes such a collection of
certificates. And since Charge Control’s OCPP implementation uses standard TLS libraries, the
usual Linux system-wide Root Certificate Authority files apply to OCPP’s TLS connections, too.

If the OCPP backend provider does not use such a well-known Root CA, the Root CA’s certificate
file must be additionally installed on the device. Such X.509 certificates must be stored as PEM
encoded files with .crt extension in /usr/local/share/ca-certificates. After placing the file(s) at this
location, update-ca-certificates must be invoked on the device to update the Root CA

bundle file, install required symlinks, etc. See the man page man 8 update-ca-

certificates on a standard Desktop Linux to get familiar with the approach and to learn

about details.

During a firmware update, these customer Root CA certificates are migrated to the updated
system partition as well and thus are also available after the updated system started.

Warning: This migration feature was not included in firmware updates until version 1.1.5 or 2.0.0
- only later firmware updates now handle this. Thus for older firmware versions and updates, in
case the backend connection requires such a customer certificate, this will lead to an offline
charging station as the updated firmware does not trust the certificate anymore.

Charge Control C User Guide

 106

Protection Class: public

15 MQTT and Mosquitto Documentation

In the default configuration it is not necessary to interact with MQTT at all.

15.1 MQTT Interface and Configuration

The charging interface uses the MQTT protocol to exchange the charging information between
the different charge control software clients. The topic_customer_hlc_ac.h defines all topics of
the charging interface. The MQTT broker is available over the internal and external (Ethernet)
interface. To implement an own MQTT client it is necessary to connect to the MQTT broker. The
default configuration of the MQTT broker is:

• MQTT_HOSTNAME: "localhost" (internal) or IPv4/IPv6 address of the board (external)

• MQTT_PORT: 1883

• MQTT_CHARGE PORT: "port0"

If it is necessary to connect to the MQTT broker from an external device, consider using the
charging service discovery as describe in the MQTT service discovery section.

After establishing an MQTT connection to the local message broker it is possible to subscribe
and publish to topics of the charging interface. The interface uses QoS level 0 for all MQTT
messages. The published messages do not need to be retained.

Charge Control C offers the possibility to provide several charging ports at only one charging
station. Some topics definitions in this document use the charge port prefix “port0/” to open the
way to distinguish between these different charge ports. This feature will be integrated in a future
release of the charging software. As long as the feature is not supported by the charging software
only “port0“ is accepted by the MQTT interface of the charging software.

Most of the MQTT message content is defined as "SimpleType” and will/must be published as a
simple string-encoded number. For example, the content of topic
TOPIC_EVSE_INIT_SESSIONID can be published as "1234567890". MQTT messages with
content type "ComplexType” are using JSON objects. In chapter Physical value type is an
example for a complex type definition.

15.2 MQTT Service Discovery

In case it is necessary to interact with the MQTT broker in the Charge Control device from an
external device, it might be a problem to know the IP address of the device, e.g. when DHCP
client is enabled and the assigned IP address thus might change. For this, the Charge Control
implements a network service to discover it on the LAN. The used approach is DNS-SD, also
known as Zeroconf and/or Bonjour protocol.

The DNS-SD announcements of a Charge Control device in the network uses the following
service parameters:

• Name: This is a product and device dependent string which is only intended to be human-
readable, e.g. to be shown in DNS-SD browsers etc. Do not use it for automatic
processing by software. Usually, this string will be similar to e.g. "Charge Control C
[00:01:87:01:02:03]”. Note: The MAC address presented in this string is always the MAC
address of the wired Ethernet interface (even if the request was received from the mains
PLC interface if present).

• Service Type:

o Name: _charge-control

o Protocol: _tcp

o Subtype: <none>

• Port: This field will contain the port number on which the MQTT server listens on, usually
1883.

• Additional Text Records:

Charge Control C User Guide

 107

Protection Class: public

o Serial Number:

▪ Key: serial

▪ Value: serial number of the Charge Control board as ASCII digits

▪ Example: serial=123456789

To look up all Charge Control devices on the network, just search for the mentioned service type,
i.e. "_chargecontrol._tcp". Keep in mind that not even one single Charge Control device might be
present on the network, so that your client might implement other means to choose the desired
device. Also note, that later specifications could also specify additional text records, e.g. when a
username and password is required to connect to the MQTT broker, or when the MQTT broker
requires an encrypted connection etc.

15.3 Charge status information

A charging session consists of consecutive charging phases. This charging phases are
represented by the MQTT charge status topics. The charge status topics can be marked as
"started" or "finished". After receiving one of these topics, it is necessary to handle the phase
specific charging information. This charging information is based on bot, content from the EVCC,
which is published to the customer interface, and EVSE content, which needs to be published to
the customer interface. So, the first step in each phase is to analyze the received EVCC
information and then react according to the standard, with the help of the EVSE MQTT messages.
The name of the MQTT message indicates which messages need to be handled. The figure below
shows the structure of the charge status specific topics.

Figure 17 Structure of topics

The information type can be "EV" or "EVSE". On EVSE side only topics with "EVSE" are intended
to be published to the customer interface. All topics with "EV” will be published from the charging
interface. The charge status information indicates the current charging phase. The EVSE topic
TOPIC_EVSE_INIT_SESSIONID needs to be published after receiving the
TOPIC_CHARGE_INIT_STATUS with "started" topic. Customers who want to develop a charger
need to subscribe to topics which start with TOPIC_CHARGE and TOPIC_EV and publish topics
which start with TOPIC_EVSE. Customers who want to develop an EV need to subscribe to topics
which start with TOPIC_CHARGE and TOPIC_EVSE and publish topics which start with
TOPIC_EV. This status topics represent the following charging phases of ISO 15118 protocol:

1. The initialization phase begins at plug connect till the high level message
ServicePaymentSelection.

2. The authentication phase begins at the CertificateInstallation message (ISO 15118-PNC
mode only) until the end of the Authentication message.

3. The charge parameter phase lasts as long as the ChargeParameterDiscovery message
is exchanged.

4. The charge phase lasts as long as the ChargingStatus message is exchanged.
Note: The PowerDelivery message before AND after the charge phase is contained here.

The flow chart below shows a normal charging sequence with the charging phases of ISO 15118.
In most cases the "finished" flags can be ignored because the phases will be processed
sequential.

Charge Control C User Guide

 108

Protection Class: public

Figure 18 Charge flow

In addition to the phase specific status topics, it is possible to observe the current connection
status. The topics TOPIC_CHARGE_CP_STATUS and TOPIC_CHARGE_PWM_STATUS can
be used to observe the physical state of the CP pin. The combination of both values provides
important information about the current connection state.

The table below shows the possible combinations:

CP State PWM-Status CP State Information

A (12V) 100% A1: EV unplugged

A (12V) 5% A2: EV unplugged with PWM

B (9V) 100% B1: EV connected, charging not possible

B (9V) 5% B2: EV connected, high level communication possible

B (9V) 8-97% B2: EV connected, only PWM possible

C (6V) 5% C2: High level charging

C (6V) 8-97% C2: Basic charging

F (-12V) Unavailability of the charging station

E (0V) Power outage or short of the control pilot to PE
Table 57 CP State Information

In case of high level communication, the QCA7000 of the board needs a few seconds to initialize
itself. After reconnection of an EV the PWM switches from 100% to 5% as soon as the QCA7000
is ready to process SLAC messages of the connected EV.

Charge Control C User Guide

 109

Protection Class: public

Besides the CP State information, the current TCP status (indicated by topic
TOPIC_CHARGE_TCP_STATUS) is another essential information about the current connection
status. After the EVCC uses the SECC Discovery Protocol (SDP) to get the IP address and port
number of the SECC, the EVCC can establish a TCP connection to the SECC. The TCP status
switches from ’0’ (not connected) to ’1’ (connection established). This is one of the first topics
after the plug of the EV is connected. In the cases of EVCC timer and error handling, it is possible
that the EV switches to CP State ’B’ and disconnects the TCP connection immediately within a
charging session, so the status topics shall be observed throughout the whole charging session.

15.4 EVSEProcessing

The EVSEProcessing parameter can be used to delay a specific charging phase. The charging
phases "AUTH" and "PARAMETER" use this parameter. The pre-defined default value of this
parameter is set to ’1’ (Ongoing) for each phase. When the processing of the received EVCC data
is finished and the charging flow can be continued, this parameter needs to be explicitly set to ’0’
(Finished). If within the customer configuration file (See chapter Basic SECC configuration) the
value for "free charging" is set to "true", the value for EVSEProcessing of the "AUTH"
phase is set to ’0’ (Finished) automatically. When the identification of the physical limits (like
EVSEMaxCurrentLimit) of the EVSE is finished, the value for EVSEProcessing shall be set to ’0’
(finished) for the "PARAMETER" phase.

To avoid skipping of data, it is recommended to publish the EVSE-Processing with "Finished"
after providing the last phase specific parameter.

If the values for the physical limits are preconfigured via the customer configuration file (See
chapter Basic SECC configuration) or the "SW2 - Rotary Coded Switch” (See chapter SW2 -
Rotary Coded Switch) then the TOPIC_EVSE_PARAMETER_EVSEPROCESSING can be sent
right after TOPIC_CHARGE_INIT_STATUS with value "started" was received.

Charge Control C User Guide

 110

Protection Class: public

15.5 MQTT Topics

15.5.1 Topics indicating the actual status of the ongoing charge phase

Topic Name Topic Type Value Comment

TOPIC_CHARGE_INIT_PROTOCOL "port0/ci/charge/init/protocol" SimpleType string Topic which indicates which charge
protocol is used in the actual charge
session. The value of this topic will either
be "ISO15118" or "IEC61851".

TOPIC_CHARGE_INIT_STATUS "port0/ci/charge/init/status" SimpleType string Topic which indicates the beginning or the
end of the initialization phase of a high
level charge compliant to ISO15118. This
includes the protocols SLAC, SDP, TCP
and V2GTP from message
SupportedAppProtocol until
PaymentDetails. The value of this topic will
either be "started" or "finished".

TOPIC_CHARGE_AUTH_STATUS "port0/ci/charge/auth/status" SimpleType string Topic which indicates the beginning or the
end of the authentication phase of a high
level charge compliant to ISO15118. This
includes the V2GTP message Cerificate*
and Authentication. The value of this topic
will either be "started" or "finished".

TOPIC_CHARGE_PARAMETER_STATUS "port0/ci/charge/parameter/status" SimpleType string Topic which indicates the beginning or the
end of the charge parameter discovery
phase of a high level charge compliant to
ISO15118. This includes the V2GTP
message ChargeParameterDiscovery. The
value of this topic will either be "started" or
"finished".

TOPIC_CHARGE_CHARGE_STATUS "port0/ci/charge/charge/status" SimpleType string Topic which indicates the beginning or the
end of the charge phase of a high level
charge compliant to ISO15118. This
includes the V2GTP messages
PowerDelivery, ChargingStatus and
MeteringReceipt. The value of this topic
will either be "started" or "finished".

Charge Control C User Guide

 111

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_CHARGE_CP_STATUS "port0/ci/charge/cp/status" SimpleType string Topic which indicates the actual CP state.
The value of this topic will be an
enumeration of the possible CP states
according IEC61851 which are "A", "B",
"C", "D", "E" or "F".

TOPIC_CHARGE_PWM_STATUS "port0/ci/charge/pwm/status" SimpleType string Topic which indicates the actual PWM duty
cycle in %. Its string represents a floating
point number with two decimal places and
a "." as decimal separator, e.g. "53.33".
The value of this topic will be the actual
value between "0.00" and "100.00”.

TOPIC_CHARGE_TCP_STATUS "port0/ci/charge/tcp/status" SimpleType string Topic which indicates the actual status of
the TCP connection between an EV and an
EVSE. The value of this topic will either be
"1" if the connection was established and
"0" otherwise.

TOPIC_CHARGE_PLUG_STATUS "port0/ci/charge/plug/status" SimpleType string Topic which indicates the actual status of
the Plug lock on customer's side. The
value of this topic will either be "locked" or
"unlocked" if the lock state can be
detected. "unknown" when the lock state
cannot be detected.

TOPIC_CHARGE_CONTACTOR_STATUS "port0/ci/charge/contactor/status" SimpleType string Topic which indicates the actual status of
the contactor on customer's side. The
value of this topic will either be "closed" or
"opened" if the contactor state can be
detected. "unknown" when the contactor
state cannot be detected.

Table 58 Topics indicating the actual status of the ongoing charge phase

Charge Control C User Guide

 112

Protection Class: public

15.5.2 Global topics for port independent charging software information

Topic Name Topic Type Value Comment

TOPIC_GLOBAL_VERSION_CHARGING_SOFTWARE "ci/global/version/charging_software" SimpleType string Topic which provides the
version of the charging
software. The version will
be published as string (e.g.
"0.7.0") after successfully
booting of the board. This
topic will be published with
MQTT retain flag, thus the
client will receive the topic
immediately after
subscribing.

TOPIC_GLOBAL_TIME_SET_STATUS "ci/global/time_set/status" SimpleType bool Topic which helps to detect
whether the system time
was set. This topic will be
published retained with a
value of '1' after a
component of the charging
stack sets the system time
or in case the system time
was successfully set via
NTP.
Whether this topic is
published with a value of '0'
before, i.e. during bootup,
is not defined; or in other
words, until the time was
set once, don't rely on that
this topic is published at all
since this behavior might
change later.

Charge Control C User Guide

 113

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_OCPP_ONLINE "ocpp/online" SimpleType bool Topic which provides the
connection status to the
OCPP backend. The
payload is set to "1"
(connected) if the
connection to an OCPP
backend is established,
otherwise "0" (not
connected)

Table 59 Global topics for port independent configuration of the charging software

15.5.3 EVSE specific V2G parameters of the initialization phase

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_SESSIONID "port0/ci/evse/init/sessionid" SimpleType long integer Topic which
provides
the
SessionID
of the
actual
charging
session.
Will be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1”.

Charge Control C User Guide

 114

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_EVSEID "port0/ci/evse/init/evseid" SimpleType integer Topic which
provides
the EVSEID
of the
actual
charger.
Will be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1".

Charge Control C User Guide

 115

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_DATETIMENOW "port0/ci/evse/init/datetimenow" SimpleType integer Topic which
provides
the actual
date and
time of the
charger in
millisecond
s from
epoch. Will
be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1".

Charge Control C User Guide

 116

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_PAYMENTOPTIONS "port0/ci/evse/init/paymentoptions" ComplexTyp
e

paymentOptionJsonObject {
"PaymentOption0”: int,
"PaymentOption1": int
}

Topic which
provides
the
payment
options of
the actual
charger.
Will be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1".

Charge Control C User Guide

 117

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_CHARGESERVICE "port0/ci/evse/init/chargeservice" ComplexTyp
e

chargeServiceJsonObject {
"ServiceID”: int,
"ServiceName”: "Name of the
Service",
"ServiceCategory”: int,
"ServiceScope":
"Name of the ServiceScope”,
"FreeService":
bool,
,"SupportedEnergyTransferTyp
e0”: int
"SupportedEnergyTransferType
1": int
"SupportedEnergyTransferType
2": int
"SupportedEnergyTransferType
3": int
"SupportedEnergyTransferType
4": int }

Topic which
provides
the charge
services of
the actual
charger.
Will be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1".

Charge Control C User Guide

 118

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_SERVICELIST "port0/ci/evse/init/servicelist” ComplexTyp
e

 Topic which
provides
the
additional
services of
the charger
beside the
charge
service. Will
be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1”.

Charge Control C User Guide

 119

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_INIT_SERVICEPARAMETER
LIST

"port0/ci/evse/init/serviceparameterl
ist”

ComplexTyp
e

 Topic which
provides
the
parameter
of additional
services of
the charger
beside the
charge
service.
This will be
important
when an EV
requests
details to
the
additional
service in
the
ServiceDet
ail request.
Will be or
should be
published at
the very
beginning
of the high
level
charge, at
least after
the TCP
status
changes to
"1”.

Table 60 EVSE specific V2G parameters of the initialization phase

Charge Control C User Guide

 120

Protection Class: public

15.5.4 EVSE specific V2G parameters of the authentication phase

Topic Name Topic Type Value Comment

TOPIC_EVSE_AUTH_GENCHALLEN
GE

"port0/ci/evse/auth/genchalleng
e”

ComplexTy
pe

 Topic which provides the Gen-
Challenge during the
Authentication phase of the
charge. Will be or should be
published at the very beginning
of the high level charge, at least
after the TCP status changes to
"1".

TOPIC_EVSE_AUTH_EVSEPROCES
SING

"port0/ci/evse/auth/evseprocess
ing”

SimpleType following
enumeration table
"EVSEProcessingTy
pe” ISO15118-2

Topic which provides the actual
status of the authentication of
the user at the charger. Will be
or should be published from the
beginning of the auth phase of
the charge which can be
indicated using
TOPIC_CHARGE_AUTH_STAT
US.

TOPIC_EVSE_AUTH_ERROR "port0/ci/evse/auth/error” SimpleType bool 1 = error, 0 = no
error

Topic which indicates if an error
occurred while the charger tries
to authenticate the user. Will be
or should be published from the
beginning of the auth phase of
the charge which can be
indicated using
TOPIC_CHARGE_AUTH_STAT
US.

Table 61 EVSE specific V2G parameters of the authentication phase

Charge Control C User Guide

 121

Protection Class: public

15.5.5 EVSE specific V2G parameters of the parameter discovery phase

Topic Name Topic Type Value Comment

TOPIC_EVSE_PARAMETER_EVSEPRO
CESSING

"port0/ci/evse/parameter/evsepro
cessing”

SimpleTy
pe

following
enumeration table
"EVSEProcessingT
ype”
ISO15118-2

Topic which provides the actual
status of the parameter
discovery of the charger. Will
be or should be published from
the beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EVSE_PARAMETER_SASCHED
ULELIST

"port0/ci/evse/parameter/sasched
ulelist”

Complex
Type

sascheduleListJson
Object: {
"SAScheduleTupleI
D” : int,
"Start” : [int, ...],
"Duration" :
int, "PMax” : [int, ...],
"PMaxMultiplier” :
[int, ...] }

Topic which provides the
charging schedule list of the
charger. Will be or should be
published from the beginning of
the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EVSE_PARAMETER_SALESTAR
IFF

"port0/ci/evse/parameter/salestari
ff"

Complex
Type

 Topic which provides the
SalesTariffs of the energy
provider. Will be or should be
published from the beginning of
the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Charge Control C User Guide

 122

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_PARAMETER_MAXCURR
ENTLIMIT

"port0/ci/evse/parameter/maxcurr
entlimit"

Complex
Type

maxCurrentLimitJso
nObject f
"Multiplier” : byte,
"Value” :
short g

Topic which provides the
chargers maximum current limit
in the parameter discovery
phase of the charge. Will be or
should be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EVSE_PARAMETER_NOTIFICAT
IONMAXDELAY

"port0/ci/evse/parameter/notificati
onmaxdelay”

SimpleTy
pe

integer Topic which provides the
chargers notification max delay
in the parameter discovery
phase of the charge. Will be or
should be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EVSE_PARAMETER_NOTIFICAT
ION

"port0/ci/evse/parameter/notificati
on”

SimpleTy
pe

following
enumeration table
"EVSENotificationT
ype"
ISO15118-2

Topic which provides the
chargers notification in the
parameter discovery phase of
the charge. Will be or should be
published from the beginning of
the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Charge Control C User Guide

 123

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_PARAMETER_NOMINALV
OLTAGE

"port0/ci/evse/parameter/nominal
voltage”

Complex
Type

nominalVoltageJson
Object {
"Multiplier" : byte,
"Value” :
short }

Topic which provides the
chargers nominal line voltage in
the parameter discovery phase
of the charge. Will be or should
be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EVSE_PARAMETER_RCD "port0/ci/evse/parameter/rcd” SimpleTy
pe

boolean "0" or "1" Topic which provides the
chargers status of the Residual
Current Device in the
parameter discovery phase of
the charge. Will be or should be
published from the beginning of
the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Table 62 EVSE specific V2G parameters of the parameter discovery phase

15.5.6 EVSE specific V2G parameters of the charge phase

Topic Name Topic Type Value Comment

TOPIC_EVSE_CHARGE_NOTIFICATIONM
AXDELAY

"port0/ci/evse/charge/notificationm
axdelay”

SimpleTyp
e

integer Topic which provides the
chargers notification max delay
in the charge phase of the
charge. Will be or should be
published from the beginning
of the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_CHARGE_S
TATUS.

Charge Control C User Guide

 124

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EVSE_CHARGE_NOTIFICATION "port0/ci/evse/charge/notification” SimpleTyp
e

following
enumeration
table
"EVSENotificat
ion-
Type”
ISO15118-2

Topic which provides the
chargers notification in the
charge phase of the charge.
Will be or should be published
from the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_CHARGE_S
TATUS.

TOPIC_EVSE_CHARGE_METERINFO "port0/ci/evse/charge/meterinfo" ComplexT
ype

 Topic which provides the
chargers meter info in the
charge phase of the charge.
Will be or should be published
from the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_CHARGE_S
TATUS.

TOPIC_EVSE_CHARGE_RECEIPTREQUIR
ED

"port0/ci/evse/charge/receiptrequir
ed"

SimpleTyp
e

 Topic which indicates if the
charger requires a receipt of the
meter info in the charge phase
of the charge. Will be or should
be published from the beginning
of the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_CHARGE_S
TATUS.

Table 63 EVSE specific V2G parameters of the charge phase

Charge Control C User Guide

 125

Protection Class: public

15.5.7 EV specific V2G parameters of the initialisation phase

Topic Name Topic Type Value Comment

TOPIC_EV_INIT_EVCCID "port0/ci/ev/init/evccid” SimpleTyp
e

string Topic which provides EVCCID
which is mostly the MAC
address of the EV´s
comunication device. Will be
or should be published from
the beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_INIT_STAT
US.

TOPIC_EV_INIT_SERVICESCOPE "port0/ci/ev/init/servicescope" SimpleTyp
e

string Topic which provides the
scope of the EV´s service
discovery. Will be or should be
published from the beginning
of the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_INIT_STAT
US.

TOPIC_EV_INIT_SERVICECATEGORY "port0/ci/ev/init/servicecategory” SimpleTyp
e

following
enumeration
table
"serviceCategor
y-Type”
ISO15118-2

Topic which provides the
scope of the EV´s service
discovery. Will be or should be
published from the beginning
of the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_INIT_STAT
US.

Charge Control C User Guide

 126

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EV_INIT_SELECTEDSERVICEID "port0/ci/ev/init/selectedserviceid" SimpleTyp
e

integer Topic which provides the EV´s
selected service ID. Will be or
should be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_INIT_STAT
US.

TOPIC_EV_INIT_SELECTEDPAYMENTOP
TION

"port0/ci/ev/init/selectedpaymentopt
ion”

SimpleTyp
e

following
enumeration
table
"paymentOption
-Type"
ISO15118-2

Topic which provides the EV´s
selected payment option. Will
be or should be published from
the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_INIT_STAT
US.

Table 64 EV specific V2G parameters of the initialisation phase

15.5.8 EV specific V2G parameters of the authentication phase

Topic Name Topic Type Valu
e

Comment

TOPIC_EV_AUTH_EMAID "port0/ci/ev/auth/emaid" SimpleTyp
e

strin
g

Topic which provides the identifier
of the charging contract at the
very beginning of the
authentication phase which can
be indicated using
TOPIC_CHARGE_AUTH_STATU
S.

TOPIC_EV_AUTH_CONTRACTSIGNATUREC
ERTCHAIN

"port0/ci/ev/auth/contractsignaturecertific
atechain"

ComplexT
ype

 Topic which provides the contract
certificate and optional sub
certificates at the very beginning
of the authentication phase which
can be indicated using
TOPIC_CHARGE_AUTH_STATU
S.

Charge Control C User Guide

 127

Protection Class: public

Topic Name Topic Type Valu
e

Comment

TOPIC_EV_AUTH_CONTRACTID "port0/ci/ev/auth/contractid" SimpleTyp
e

strin
g

Topic which provides the identifier
of the charging contract at the
very beginning of the
authentication phase which can
be indicated using
TOPIC_CHARGE_AUTH_STATU
S.

TOPIC_EV_AUTH_GENCHALLENGE "port0/ci/ev/auth/genchallenge” SimpleTyp
e

strin
g

Topic which provides the
challenge sent by the SECC
which can be indicated using
TOPIC_EVSE_AUTH_GENCHAL
LENGE.

Table 65 EV specific V2G parameters of the authentication phase

15.5.9 EV specific V2G parameters of the parameter phase

Topic Name Topic Type Value Comment

TOPIC_EV_PARAMETER_MAXSASCH
EDULETUPLES

"port0/ci/ev/parameter/maxsasch
eduletuples"

SimpleTy
pe

integer Topic which indicates the
maximal number of entries in
the SAScheduleTuple the
EVSE shall provide. The EVSE
can transmit up to the maximum
number of entries defined in the
parameter.

TOPIC_EV_PARAMETER_REQUESTED
ENERGYTYPE

"port0/ci/ev/parameter/requested
energytype”

SimpleTy
pe

following
enumeration table
"energyTransferType
" ISO15118-2

Topic which provides the EV´s
requested energy transfer type.
Will be or should be published
from the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Charge Control C User Guide

 128

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EV_PARAMETER_DEPARTURE
TIME

"port0/ci/ev/parameter/departuret
ime”

SimpleTy
pe

long integer Topic which provides the
intended departure time of the
EV in seconds from the point in
time when sending the
according message. Will be or
should be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EV_PARAMETER_EAMOUNT "port0/ci/ev/parameter/eamount” Complex
Type

eAmountJsonObject
{"Multiplier” : byte,
"Value" : short }

Topic which provides the
estimated amount of energy the
EV will consume in the
upcoming charge. Will be or
should be published from the
beginning of the parameter
phase of the charge which can
be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EV_PARAMETER_MAXVOLTA
GELIMIT

"port0/ci/ev/parameter/maxvoltag
elimit"

Complex
Type

maxVoltageLimitJson
Object { "Multiplier" :
byte, "Value” : short }

Topic which provides the
maximum voltage limit
supported by the EV in the
parameter
discovery phase of the charge.
Will be or should be published
from the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Charge Control C User Guide

 129

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EV_PARAMETER_MAXCURRE
NTLIMIT

"port0/ci/ev/parameter/maxcurre
ntlimit"

Complex
Type

maxCurrentLimitJson
Object { "Multiplier” :
byte, "Value” : short }

Topic which provides the EVs
maximum current limit
supported by the EV in the
parameter discovery phase of
the charge. Will be or should be
published from the beginning of
the parameter phase of the
charge which can be indicated
using
TOPIC_CHARGE_PARAMETE
R_STATUS.

TOPIC_EV_PARAMETER_MINCURREN
TLIMIT

"port0/ci/ev/parameter/mincurren
tlimit"

Complex
Type

minCurrentLimitJson
Object { "Multiplier” :
byte, "Value”: short}

Topic which provides the EVs
minimum current limit supported
by the EV in the parameter
discovery phase of the charge.
Will be or should be published
from the beginning of the
parameter phase of the charge
which can be indicated using
TOPIC_CHARGE_PARAMETE
R_STATUS.

Table 66 EV specific V2G parameters of the parameter phase

15.5.10 EV specific V2G parameters of the charge phase

Topic Name Topic Type Value Comment

TOPIC_EV_CHARGE_READYTOCHA
RGESTATE

"port0/ci/ev/charge/readytoch
argestate"

SimpleTy
pe

following
enumeration table
"chargeProgressTyp
e” ISO15118-2

Topic which provides if the EV is
ready to charge. Will be or should be
published from the END of the
parameter phase of the charge which
can be indicated using
TOPIC_CHARGE_PARAMETER_ST
ATUS OR it will end the pre charge
phase which can be indicated using
TOPIC_CHARGE_PRECHARGE_ST
ATUS.

Charge Control C User Guide

 130

Protection Class: public

Topic Name Topic Type Value Comment

TOPIC_EV_CHARGE_CHARGINGPR
OFILETUPLEID

"port0/ci/ev/charge/chargingpr
ofiletupleid”

SimpleTy
pe

string Topic which provides the selected
SAScheduleTupleID from the
TOPIC_EVSE_PARAMETER_SASC
HEDULELIST. Will be or should be
published from the beginning of the
charge phase of the charge which
can be indicated using
TOPIC_
CHARGE_CHARGE_STATUS.

TOPIC_EV_CHARGE_CHARGINGPR
OFILEENTRY

"port0/ci/ev/charge/chargingpr
ofileentry"

Complex
Type

chargingProfileJson
Object: { "Start” :
[int,...],
"PMax” : [int,...],
"PMaxMultiplier” :
[int,...],
"NumberOfPhases”
: [int,...] }

Topic which provides information
about the selected charging profile
from the
TOPIC_EVSE_PARAMETER_SASC
HEDULELIST. Will be or should be
published from the beginning of the
charge phase of the charge which
can be indicated using
TOPIC_CHARGE_CHARGE_STATU
S.

Table 67 EV specific V2G parameters of the charge phase

15.5.11 EV specific V2G parameters of the session stop request

Topic Name Topic Type Value Comment

TOPIC_EV_STOP_PROGRESS "port0/ci/ev/stop/progress” SimpleType following enumeration table
"chargingSessionType”
ISO15118-2

Topic which provides the EV´s
information if the charging process shall
either be terminated or paused. Will be
published if the SessionStopRequest is
received on EVSE side.

Table 68 EV specific V2G parameters of the session stop request

Charge Control C User Guide

 131

Protection Class: public

15.6 Programming example for subscribing and publishing topics

Charge Control C User Guide

 132

Protection Class: public

void handleStatusTopics(struct mosquitto *mosq, void *userdata, const struct mosquitto_message *message)

{

 int result;

 if (strcmp(message->topic, TOPIC_CHARGE_INIT_STATUS) == 0) {

 if (strcmp((char *) message->payload, "started") == 0) {

 char * sessionId = generateSessionId();

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_INIT_SESSIONID, sizeof (sessionId), sessionId, qosLevel,

retain);

 char * evseId = getEVSEId();

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_INIT_EVSEID, sizeof (evseId), evseId, qosLevel, retain);

 char * datetimenow = getActualTime().toCharArray();

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_INIT_DATETIMENOW, sizeof (datetimenow), datetimenow,

qosLevel, retain);

 // ... publish every further topic which can be published here

 }

 }

 else if (strcmp(message->topic, TOPIC_CHARGE_AUTH_STATUS) == 0) {

 if (strcmp((char *) message->payload, "started") == 0) {

 char authenticated = (char) authenticateUser();

 if (EVSEProcessing.Finished == authenticated) { // some enumerated value ???

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_AUTH_EVSEPROCESSING, 1, &authenticated, qosLevel,

retain);

 }

 // error case

 else if (Authentication.Error == authenticated) {

 char error = '1';

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_AUTH_ERROR, 1, &error, qosLevel, retain);

 }

 }

 }

 else if (strcmp(message->topic, TOPIC_CHARGE_PARAMETER_STATUS) == 0) {

 if (strcmp((char *) message->payload, "started") == 0) {

 char * nominalVoltage = createNominalVoltageJSonObject();

 result = mosquitto_publish(mosq, NULL, TOPIC_EVSE_PARAMETER_NOMINALVOLTAGE, sizeof (nominalVoltage),

nominalVoltage, qosLevel, retain);

 // and so on ...

 }

 }

 else if (strcmp(message->topic, TOPIC_CHARGE_CHARGE_STATUS) == 0) {

Charge Control C User Guide

 133

Protection Class: public

 if (strcmp((char *) message->payload, "started") == 0) {

 startCharging(); // close contactors before

 }

 }

}

void handleCharge(struct mosquitto *mosq, void *userdata, const struct mosquitto_message *message) {

 if (strcmp(message->topic, TOPIC_EV_CHARGE_READYTOCHARGESTATE) == 0) {

 if (strcmp((char *) message->payload, "Start") == 0) {

 closeContactors();

 }

 }

 // ...

}

......

Charge Control C User Guide

 134

Protection Class: public

15.7 Physical value type

The physical value type is used to determine the parameters of the power electronic. This type is
defined as JSON object and consists of three name/value pairs.

physical_value_json_object{

 "Multiplier":byte,

 "Value":short,

 "Unit":byte //optional

}

The table below shows the physical value type definition.

Key Type Values

Multiplier byte -3, -2, -1, 0, +1, +2, +3

Unit byte 0 (hours), 1 (minutes), 2 (seconds), 3 (ampere) 4 (volt), 5 (watt), 6 (watt-
hours)

Value short -32.768 to +32.767
Table 69 Physical value type definition

When electrical parameters are signalized, their units do not need to be transmitted because
those are predefined in the ISO15118-2 table 68. So for current and voltage the units will be
omitted from the JSON objects.

15.8 Basic SECC configuration

The basic SECC configuration is stored in path /etc/secc/ under the JSON file "customer.json”.
The JSON object "grid” provides all power-electronic specific parameters. The configuration will
be used to initialize the charging parameters and will be automatically loaded after the EV plug is
connected. The topic TOPIC_CHARGE_INIT_STATUS with "started” signalizes that the
initialization is finished and the MQTT interface is ready to receive messages. Most of the default
parameters can be overwritten with the content of the respective MQTT message. If a developer
doesn´t need to provide other values, the according topics do not need to be sent.

15.9 Stop charging and error shutdown on EVSE side

To stop the charge the EVSE has the possibility to send topic TOPIC_EVSE_*_NOTIFICATION
with payload "StopCharging” ('1') in some phases of the charge. The "EVSENotification” topic is
not provided in every charging phase. Within the authentication phase the
TOPIC_EVSE_AUTH_ERROR topic can be used to abort a charging session. Note, there can be
EVs which don´t support the stop by ignoring the "EVSENotification". In this case we suggest to
abort the charge by using TOPIC_EVSE_AUTH_ERROR. Contactors should be opened
immediately after sending this topic. For external broker communication over the Ethernet
interface it is recommended to use the "Last Will and Testament” (LWT) mechanism of MQTT to
handle a situation if the connection is closed unexpectedly.

15.10 Stop charging and error shutdown indication on EV side

A charging session can be interrupted by the EV in any charging phase. The common way is that
the EV changes the CP State from ’C’ to ’B’ within a running charging phase (See chapter Charge
status information). The charging stack observes the CP State throughout the entire charging
session and closes the TCP connection if an unexpected CP State has been detected. In addition,
the EV can set a failed error code in one of the possible error code topics. The error codes are
described in the ISO15118/DIN70121 standards. The default value, when the EV has no error
detected, is ’0’ ("No Error”). The error codes are intended for informational purposes only, and
they shall not influence the EVSE charging process.

Charge Control C User Guide

 135

Protection Class: public

15.11 Renegotiation process

In ISO15118 it is possible to renegotiate the charging schedule between EV and EVSE. Both EV
and EVSE can trigger the renegotiation process and can interrupt the charging progress. The
EVSE can request the renegotiation process over the phase specific message type
"NOTIFICATION”. This parameter must be set to "Renegotiation” (’3’). Either of an EVSE request
or own request the EV signalizes the start of renegotiation process over the topic
TOPIC_EV_CHARGE_READYTOCHARGESTATE with "Renegotiate" (’2’). The figure "charge
flow” of chapter Charge status information shows the typical message sequence of the
renegotiation process. If the renegotiation process has started, the charging phase will be
interrupted and the EV switches to CP State B. After receiving of the topic
TOPIC_CHARGE_PARAMETER_STATUS with "started” the charging schedule must be updated
over topic TOPIC_EVSE_PARAMETER_SASCHEDULELIST. The physical values shall be set
to a valid state before starting the next phase. If the EVSE is ready to continue the charging
progress, phase "PARAMETER" must be set to "finished” (’0’) with the EVSE-Processing
parameter (See chapter EVSEProcessing).

List of topics which will be reset if the renegotiation process has started:

1. TOPIC_EVSE_PARAMETER_EVSEPROCESSING (Ongoing ’1’)

2. TOPIC_EVSE_PARAMETER_SASCHEDULELIST (Empty list)

15.12 Pausing and resuming of a charging session

In ISO15118 it is possible that the EV can pause a charging session and later resume it. The
figure "charge flow" of chapter Charge status information shows the typical message sequence if
the EV uses the pause mechanism. This feature is currently not implemented.

15.13 Internal error behavior & safe state

The Charging stack always monitors the internal hardware abstraction (e.g. contactor or locking
motor). In case it doesn’t react within the defined times, the stack goes into an error mode and
tries to achieve a safe state. This state is defined as following:

Topic Name Topic state

TOPIC_CONTACTOR_STATE_TARGET "port0/contactor/state/target" 0

TOPIC_VENTILATION_STATE_TARGET "port0/ventilation/state/target" 0

TOPIC_CHARGING "port0/charging" 0

TOPIC_PLUG_LOCK "port0/plug_lock/state/target" 0

TOPIC_CP_DUTY_CYCLE "port0/cp/duty_cycle" 0.00
(unrecoverable)
or 100.00
(recoverable)

Table 70 Internal error behaviour & safe state

Note: The duty cycle in safe state depends on whether the error case is considered as
unrecoverable (e.g. RCD error, contactor error) or not (e.g. plug lock error).

Additionally in case of a permanent plug lock failure, the Charging stack tries to recover from this
situation by driving back to the last valid state and then to the desired state.

15.14 Emergency alarm

In order to terminate the power supply for safety reasons the Charging stack supports an
emergency alarm. This feature must be configured in the customer.json accordingly. In case

the emergency switch has been asserted, the Charging stack tries to achieve the safe state
(unrecoverable) as fast as possible.

Charge Control C User Guide

 136

Protection Class: public

15.15 RCD monitoring and testing

In order to detect and react to residual direct currents, the Charging stack supports RCD monitoring and testing. This feature must be configured in the
customer.json (Charging Stack Configuration Files).

Both features, RCD monitoring and testing, are optional features. The RCD monitoring can be used without testing, but to be in line with the standard
IEC62955, RCD testing must be enabled when using RCD's.

Charge Control C User Guide

 137

Protection Class: public

15.15.1 Hardware configuration

Figure 19 RCD connection

Charge Control C User Guide

 138

Protection Class: public

Parameter in customer.json Default Remark

ports[0]/rcd_monitor/gpio 122 (= DIG_IN_2) GPIO for RCD feedback

ports[0]/rcd_monitor/polarity active high GPIO polarity for RCD feedback

ports[0]/rcd_monitor/test_gpio 87 (= PUSH_PULL_OUT_4) GPIO for RCD test trigger

ports[0]/rcd_monitor/test_gpio_polarity active high GPIO polarity for RCD test trigger

Note: The feedback GPIO pin must not be in floating state. To ensure this, connect a pullup or pulldown resistor to this GPIO pin, depending on the RCD
device. This information can be taken from RCD datasheet.

15.15.2 RCD monitoring behavior

There are basically three errors. The error will be sent to the backend via OCPP (see MQTT topics)

 Description Reaction

SpuriousRcdError This error occurs when RCD feedback
signal reports an error, and no EV is
connected.
When this error occurs the error
source has to be searched in Charging
station and equipment.

• leads to a non-recoverable error state (no charging possible)

• the error must be cancelled manually

• OCPP status notification is sent to backend with error code (see OCPP
StatusNotification)

RcdTestError This error occurs when RCD test
failed. The error source has to be
searched at the RCD device or wiring.

• leads to an non-recoverable error state (no charging possible)

• the error must be cancelled manually

• OCPP status notification is sent to backend with error code (see OCPP
StatusNotification)

RcdGroundFailure This error occurs when RCD feedback
signal reports an error during an EV is
connected.
When error is still available after EV is
disconnected, the error is going to be
a SpuriousRcdError.
When error disappears, after EV is
disconnected, the error source has to
be searched at the EV.

This error is a recoverable error. The error is only present when EV is connected.
When error is still available after disconnection, the error leads to a non-recoverable
state (no charging possible). OCPP status notification is sent to backend with error
code (see OCPP StatusNotification)
Otherwise, no error is available anymore and a new charging session can be started.
An empty string is sent to the backend via OCPP.

15.15.3 RCD test behavior

The automatic RCD test will be executed at:

• every start of the charging station

Charge Control C User Guide

 139

Protection Class: public

• before each charging session when EV is going to be connected

• after 24h have passed

The following graph shows the moments when an automatic RCD test is executing and the reaction to the RCD test result.

Figure 20 RCD test overview

Charge Control C User Guide

 140

Protection Class: public

15.15.4 RCD test timings

Due different functionality of RCD sensors, the timings are configurable in the customer.json (Charging Stack Configuration Files). The respective times
must be determined by the customer. Datasheets can be checked for timing diagrams.

For example: The Western Automation RCM 14-01 needs to hold the trigger output pin high until the RCD feedback is checked. The Bender RCD-121
just needs a short 50ms impulse to trigger a test.

The following graph shows the configurable timings and relationship for an RCD test.

Figure 21 RCD test timing

Parameter Parameter in customer.json Constraints

ttrigger ports[0]/rcd_monitor/test_trigger_time 0 ms < ttrigger < 5000 ms

tcheck-tripped ports[0]/rcd_monitor/test_check_tripped_time 0 ms < tcheck-tripped < 5000 ms

tcheck-normal ports[0]/rcd_monitor/test_check_normal_time 0 ms < tcheck-normal < 5000 ms

 tcheck-tripped < ttrigger + tcheck-normal

(this constraint ensures the order of 1st "tripped" and back to "normal" later)

Charge Control C User Guide

 141

Protection Class: public

Table 71 Parameter description

 Western Automation RCM14-01 in ms Bender RCD-121 in ms

ttrigger 815 50

tcheck-tripped 810 750

tcheck-normal 410 2000
Table 72 Examples for RCD devices

15.15.5 MQTT topics

Topic Name Topic Type Value Comment

TOPIC_RCD_STATE_ACTUAL "port0/rcd/state/actual" SimpleType bool Actual RCD state (1 = not tripped, 0 = tripped)
This topic is only going to state "tripped" if a
residual current occurs or a spurious RCD error
comes up. During a test this topic is going to be
ignored and in state "not tripped".

TOPIC_RCD_FEEDBACK_AVAILABLE "port0/rcd/feedback/available" SimpleType bool Flag to indicate when RCD feedback is configured
(0 = not available, 1 = available)

TOPIC_RCD_TEST_AVAILABLE "port0/rcd/test/available" SimpleType bool Flag to indicate when RCD test is configured (0 =
not available, 1 = available)

TOPIC_RCD_TEST_PERFORM "port0/rcd/test/perform" SimpleType - Internal signal to trigger an RCD test (no
retained). The end of the test is signalized via
TOPIC_RCD_ERROR.

TOPIC_RCD_TEST_TIMESTAMP "port0/rcd/test/timestamp" SimpleType string This topic tracks when the latest RCM test
finished. It can be used to monitor the regular
testing of the RCM, e.g. every 24h. Timestamp
in RFC 3339 format, e.g. "2023-06-
23T06:54:55.123Z"

TOPIC_RCD_ERROR "port0/rcd/error" SimpleType string This topic indicates the type of RCD error to
inform the ocppd and/or customer implementation
about the detected error type:

1. In case of a residual RCD error detected
during a charging session, this topic holds
the string "RcdGroundFailure".

Charge Control C User Guide

 142

Protection Class: public

Topic Name Topic Type Value Comment

2. In case of a spurious RCD error during a
non-charging state this topic holds the
string "SpuriousRcdError", and topic
"port0/rcd/state/actual" is going to state
"tripped"

3. In case of an error caused by a test, this
topic holds the string "RcdTestError"
(topic "port0/rcd/state/actual" keeps state
"not tripped"), and when a test succeeded
without error, then this topic is published
as empty string.

4. When "RcdGroundFailure" disappears,
this topic holds an empty string.

Table 73 MQTT topics for RCD handling

15.16 Current limits for basic AC charging

The charging stack internally determines the minimum of all current limits. All these values are considered in Ampere. The special value of -1 should be
considered as no current limit. The following current limits apply equally to single- and three-phase systems, i.e. for a three-phase system a current limit
means that the current is allowed on each phase.

Charge Control C User Guide

 143

Protection Class: public

Topic Name Topic Type Valu
e

Comment

TOPIC_CABLE_CURRENT_LIMIT "port0/cable_current_limit" SimpleTy
pe

integ
er

Internal topic which indicates the
supported current by the attached
cable. This is published by Charge
Control C and should not be
overwritten. The value is determined
by evaluating the Proximity Pilot
signal. In case the charging station is
equipped with a fixed cable, i.e. the
parameter "portX/pluggable" in
configuration file "customer.json" is
set to "false", then the cable rating
must be configured also in that
configuration file via parameter
"portX/pp/cable_current_limit". This
MQTT topic is published as "-1" in
this case, and the value is ignored
by the charging stack - the value
from the configuration file is used
directly.

TOPIC_EVSE_GRID_CURRENT_LIMIT_ACT
UAL

"port0/ci/evse/basic/grid_current_limit/a
ctual"

SimpleTy
pe

integ
er

Topic which indicates the maximum
current rating of the grid cabling and
fusing the charging station is
connected to. This is published and
evaluated once by Charge Control C
and should not be overwritten.

TOPIC_EVSE_EVSE_CURRENT_LIMIT_ACT
UAL

"port0/ci/evse/basic/evse_current_limit/
actual"

SimpleTy
pe

integ
er

Topic which indicates the maximum
current rating of EVSE's internal
cabling. This is published and
evaluated once by Charge Control C
and should not be overwritten.

Charge Control C User Guide

 144

Protection Class: public

Topic Name Topic Type Valu
e

Comment

TOPIC_EVSE_BASIC_MAXCURRENTLIMIT "ci/evse/basic/maxcurrentlimit" SimpleTy
pe

float Topic which indicates the maximum
current of the whole charge point
used for dynamic load management.
It can be represented as an integer,
or as a floating point number with
one decimal place and a "." as
decimal separator, e.g. "20.2". This
value is intended for OCPP smart
charging. A value below 6 effectively
sets the limit to 0 and forces a CP
duty cycle of 100%, but keeps the
current contactor state.

TOPIC_GLOBAL_DYN_CURRENT_LIMIT "ci/global/dyn_current_limit/+" SimpleTy
pe

float Topic which can be used to
configure the maximum current of
the whole charge point used for
dynamic load management by
customer applications. It can be
represented as an integer, or as
a floating point number with one
decimal place and a "." as decimal
separator, e.g. "20.2". The names
used in place of the '+' wildcard
character allow to publish up to 5
different current limits to the Charge
Control C. These names are free to
choose, but should be kept as short
as possible. The topic names and
the values are not stored
persistently, so after a reboot they all
get lost. A value below 6 effectively
sets the limit to 0 and forces a CP
duty cycle of 100%, but keeps the
current contactor state. See the
example below to publish this topic.

Charge Control C User Guide

 145

Protection Class: public

Topic Name Topic Type Valu
e

Comment

As notes above, the value published
here applies to each individual
phase in a three-phase system. The
charging stack does not spread it
itself to the available phases. The
customer application is in charge to
track the actual available phase
count, e.g. single-phase vs. three-
phase system and/or phase count
switching feature is enabled and in
effect.
It is recommended to publish this
topic as "retained" so that e.g. other
MQTT clients are aware of it when
connecting to the broker after the
limit was published.

TOPIC_EVSE_BASIC_OFFERED_CURRENT
_LIMIT

"port0/ci/evse/basic/offered_current_li
mit"

SimpleTy
pe

float Topic which indicates the overall
offered current limit of the EVSE. It
represents a floating point number
with one decimal place and a "." as
decimal separator, e.g. "20.2". This
topic is published each time a
current limit is configured via topic or
configuration file. This topic can also
be used as feedback signal of a
dynamic current request sent via
topic
TOPIC_GLOBAL_DYN_CURRENT_
LIMIT.

Charge Control C User Guide

 146

Protection Class: public

Topic Name Topic Type Valu
e

Comment

TOPIC_EVSE_BASIC_PHYSICAL_CURREN
T_LIMIT

"port0/ci/evse/basic/physical_current_li
mit"

SimpleTy
pe

integ
er

Topic which indicates the maximum
possible current which can be
offered by the EVSE when no
dynamic limit applies. It is
determined by the charging stack by
using the minimum of the values
grid_current_limit, evse_current_limit
and cable_current_limit - but
regardless of any dynamic limits set
by customer. This topic is published
each time when any of these limits
change, e.g. when cable is plugged
in and the station does not have a
fixed cable.

Table 74 Current limits for basic AC charging

Charge Control C User Guide

 147

Protection Class: public

15.16.1 Example to publish dynamic current limits over MQTT

Publish up to 5 different limits. Notice how the 6th published limit is ignored:

ci/global/dyn_current_limit/internal_example_limit 6

ci/global/dyn_current_limit/custom_ocpp_limit 13

ci/global/dyn_current_limit/special_limit 20

ci/global/dyn_current_limit/custom_limit_1 32

ci/global/dyn_current_limit/custom_limit_2 63

ci/global/dyn_current_limit/ignored_limit 1

Configured current limit: 6 A (value of internal_example_limit,

because it is the lowest value of the five relevant topics, the sixth

topic is ignored)

Once published the limits can be overwritten at runtime by retransmitting the topic:

ci/global/dyn_current_limit/internal_example_limit 20

Configured current limit: 13 A (value of custom_ocpp_limit is now the

lowest value of the five relevant topics)

Note: Please consider that the current limit is determined as a minimum over all current limits.
Thus, the value of the current limit can only be adjusted over topic
TOPIC_GLOBAL_DYN_CURRENT_LIMIT if it fits with the other limitations.

15.17 RFID authorization

Topic Name Topic Type Val
ue

Comment

TOPIC_RFID_AUTHORIZ
ATION_REQUEST

"port0/rfid/authoriza
tion_request"

Comple
xType

arra
y of
stri
ngs

Internal topic which
contains the RFID
standard used and the
UID of the
accompanying RFID
tag. The latest version
of the charging stack
expects that this topic
is not retained.
The RFID standard
element is a string.
Supported standards
are "ISO14443" and
"ISO15693". In case
the standard
information is not
available in the
implementation,
"UNKNOWN" is used.
The UID is also a
string. The format is
hex representation,
little endian, zero filled
and without any
delimiter.
Element 0: RFID
standard
Element 1: RFID tag

Example:

Charge Control C User Guide

 148

Protection Class: public

["ISO14443","1F2D

3A4F5506C7"]

Table 75 RFID authorization

Note: The old topic port0/rfid/authorizereq for signalling the RFID tag has been marked
deprecated. To ensure backwards compability the old RFID topic is still available but will be
removed soon.

15.18 Sharing one RFID reader between multiple Charge Control C

Charge Control charging stack provides the ability to share a single RFID reader between multiple
Charge Control C. This requires that the Charge Control C without the RFID reader is available
under a fixed address. Also the Charge Control C with the RFID reader must be able to connect
to the MQTT broker of the other board.

Parameter Value Note

ocpp/rfidStopTransaction false This value is required.

ocpp/rfidRequiresEvPresent true This value is required.

ports[0]/user_authentication ocpp

ports[0]/rfid/enable true

ports[0]/rfid/protocol Stronglink

ports[0]/rfid/remote_ports[]/uri mqtt://192.168.1.5 Only first 3 entries will be handled.
Table 76 Example settings for Charge Control C with RFID reader (MQTT Master):

Parameter Value Note

ocpp/rfidStopTransaction false This value is required

ocpp/rfidRequiresEvPresent true This value is required

ports[0]/user_authentication ocpp

ports[0]/rfid/enable true

ports[0]/rfid/protocol mqtt
Table 77 Example settings for Charge Control C without RFID reader (MQTT Slave):

Note: It is possible to share an RFID reader and a USB internet dongle. This requires at least a
static IP configuration of the MQTT Slave, otherwise those boards would race for the dynamic IP
addresses from the dongle.

15.18.1 Shared RFID authorization behavior

Sharing one RFID reader requires a special authorization behavior:

• no EV connected → RFID tag ignored

• one non-charging EV connected → RFID tag accepted

• one non-charging EV connected, one charging EV connected → RFID tag accepted

• two non-charging EV connected since up to 60 seconds → RFID tag accepted, last one
will be selected

• two non-charging EV connected since more than 60 seconds → RFID tag ignored

• two charging EV → RFID tag ignored

15.19 Ventilation Control

Charge Control C allows to connect an external ventilation on relay 2 of the board. The Charge
Control C configuration offers two options for the ventilation control. The ventilation can be
controlled "internally" by the charging software or "externally" by the customer's own software via
MQTT topics.

The table below shows the relevant MQTT topics for "external" ventilation control.

Charge Control C User Guide

 149

Protection Class: public

Topic Name Topic Typ
e

Comment

TOPIC_VENTILATION_AVAILABLE "port0/ventilation/available" bool This topic
published
once by
charging
software
during
startup when
internal
ventilation is
enabled via
configuration
file. The
payload is
set to "1" if
the
ventilation
control is
enabled,
otherwise
"0". This
topic must
be published
by the
customer if
"external"
ventilation is
enabled in
the
configuration
.

Charge Control C User Guide

 150

Protection Class: public

Topic Name Topic Typ
e

Comment

TOPIC_VENTILATION_STATE_TARG
ET

"port0/ventilation/state/targ
et"

bool This topic is
used to
control the
connected
ventilation
fan. This
topic must
be published
by the
customer
software if
the external
control mode
is enabled
via
configuration
, otherwise it
is published
by the
charging
stack itself.
The payload
must be set
to "1" if the
ventilation
should be
started (relay
2 should be
closed) and "
0" if the
ventilation
should be
stopped
(relay 2
should be
opened).

Charge Control C User Guide

 151

Protection Class: public

Topic Name Topic Typ
e

Comment

TOPIC_VENTILATION_STATE_ACTU
AL

"port0/ventilation/state/actu
al"

bool This topic
provides the
actual
ventilation
state as read
from the
related GPIO
(see table
Relays). This
topic will be
published by
the charging
software.
The payload
is set "1" if
the
ventilation is
started (relay
2 is closed)
and "0" if the
ventilation is
stopped
(relay 2 is
opened).
This topic
can be used
to check
whether the
relay has
actually
switched.
Note: If no
feedback is
configured in
the
customer.jso
n this topic is
only
published as
confirmation
that the
target value
was received
successfully.

Table 78 MQTT topics for ventilation

The next table gives an overview of different use cases for the ventilation control and shows the
necessary configurations to configure them.

Charge Control C User Guide

 152

Protection Class: public

U
se
ca
se

Descr
iption

customer.json
configuration file

MQTT topic

ventilatio
n/enable

ventilatio
n/control

port0/ventilati
on/available

port0/ventilatio
n/state/target

port0/ventilatio
n/state/actual

1 Custo
mer
doesn'
t want
to use
ventila
tion,
and
also
doesn'
t want
to use
the
relais
at all

false internal "0" is
published by
charging stack

not published by
charging stack

published by
charging stack

2 Custo
mer
doesn'
t want
to use
ventila
tion,
but
wants
to use
the
relais
for
custo
m
purpo
se

false external "0" must be
published by
external/custo
mer software,
but should not
be of interest
at all

not published by
charging stack,
can be used by
customer/extern
al software to
switch the relay
for customer
purpose

published by
charging stack

3 Custo
mer
wants
to use
ventila
tion
(contr
olled
by cha
rging
stack)

true internal "1" is
published by
charging stack

published
by charging
stack as soon
as MQTT topic
"available" is
published

published by
charging stack

Table 79 Use cases for the ventilation control

The next table shows the preconditions of the config parameter and MQTT topics to allow
charging with requested ventilation by the EV (CP State D charging).

Charge Control C User Guide

 153

Protection Class: public

customer.json
configuration
file
always_accept
_cp_state_d

customer
.json
configura
tion file
ventilatio
n/enable

customer.
json
configurat
ion file
ventilatio
n/control

MQTT topic
port0/ventilati
on/available

MQTT topic
port0/ventilatio
n/state/actual

Remarks

true don't care don't care don't care don't care The EVs
request
for
ventilatio
n is
always
accepted.

false

false internal don't care don't care Charging
is not
allowed.
This is
indicated
with duty
cycle of
100%.
The plug
lock (if
available)
is/remain
s closed.

external don't care is published by
charging stack

true internal is published by
charging stack

is published by
charging stack

external must be
published by
external/custo
mer software

must be
published by
external/custome
r software
depending on
the actual
request
(port0/ventilation
/state/target) by
charging stack

Charging
is only
possible
when
external/c
ustomer
software
announce
s that
ventilatio
n is
actually
available.

Table 80 Requirements for CP state D charging

15.20 Phase Count Switching between 3- and 1-phase Charging

Legal notice: This feature is considered as experimental. chargebyte assumes no liability for
damage to electric vehicles caused by phase count switching.

Instead of using relay 2 on the board for a fan, it is also possible to use it for phase count switching
during a basic charging session (PWM controlled). In this case, two switching devices need to be
connected to relay 1 and 2. The phase count switching must be triggered via MQTT. Please note
that this feature only works with Charge Control C 200-300 and will interrupt an ongoing charging
session if there is any. If the switching is triggered during an active charging session the stack
will pause and try to resume the charging process.

The following requirements must be fulfilled to use this feature:

• Charge Control C 200 or 300 must be used (Charge Control C 100 is only equipped with
one relay)

Charge Control C User Guide

 154

Protection Class: public

• rotary encoder switch must be set to 3 phases

• charging type in customer.json must be configured to "basic"

• ventilation control for relay 2 must be disabled (see above)

Currently there are the following limitations:

• there is no kind of wake-up function in case the EV doesn't react on the CP duty cycle
change after the switch delay

• it's not possible to use this feature via OCPP smart charging

The diagram below shows the corresponding hardware setup for this feature. This example wiring
is using additional NC feedback contacts of the primary and secondary contactors, however, both
feedback types can be configured individually in the customer.json configuration file. In this
example wiring, a primary contactor which is only rated for 230 V AC could be used, since the
same phase is used for controlling the relay and which is switched through to the EV. However,
the secondary contactor must still be rated for 400 V AC since two different phases are switched.

Figure 22 Wiring Diagram for Phase Count Switching

Note, that the order for switching on/off both relays is fixed:

• providing power to the EV: secondary contactor is closed first (if the requested count of
phases require it), then primary contactor is closed

• revoking power from the EV: primary contactor is opened first, then secondary contactor
is opened (if it was closed)

The table below shows the relevant MQTT topics for "phase count switching".

Charge Control C User Guide

 155

Protection Class: public

Topic Name Topic Type Rang
e

Comme
nt

TOPIC_EVSE_PHASE_TARGET "port0/ci/evse/phase/target" integ
er

1 or
3

Target
count of
phases
to
switch
to.
Invalid
values
are
ignored.

TOPIC_EVSE_PHASE_ACTUAL "port0/ci/evse/phase/actual" integ
er

0, 1 ,
3

Actual
phase
count.

TOPIC_EVSE_PHASE_SWITCH_
DELAY

"port0/ci/evse/phase/switch_
delay"

integ
er

10-
300

Delay in
seconds
between
switchin
g off the
first
contacto
r and re-
enabling
the CP
duty
cycle,
Invalid
values
are
ignored.

Table 81 MQTT Topics for Phase Count Switching

The table below describes the relevant configuration parameters.

Configuration (found in file /etc/secc/customer.json)

Parameter Description Type Default

ports[0]/switch3to1phase/enable Enables or disables the phase
count switching feature.
Enabling this feature prohibits
use of ventilation.

boolean false

ports[0]/switch3to1phase/feedback_type Defines the logic behind the
feedback of the secondary
contactor (nc = normally
close, no = normally open).

string no

ports[0]/switch3to1phase/switch_delay Defines the length in seconds
of a safety/guard interval
which is enforced during
switching the phase count.
After a phase count change is
requested, the charging stack
will first switch off all phases,
then wait this amount of time,
and finally present the new
phase count to the EV. This
value can also be changed
during runtime via MQTT.
Possible values are: 10 - 300

integer 20

Table 82 Configuration Parameter for Phase Count Switching

Charge Control C User Guide

 156

Protection Class: public

15.21 Fake High-Level DC Charging Mode

Charge Control C supports a feature to retrieve the MAC address and SOC (State of Charge)
value of a high-level communication (HLC) session and to switch automatically to a basic AC
PWM charging session afterwards. This mode is called "fake_highlevel_dc" and can be activated
in the customer.json file over the key "ports[0]/charging_type" and option
"basic+fake_highlevel_dc".

When the feature is activated the charging software indicates to the EV that HLC is required. The
charging software waits at least 20 seconds for the EV to start the SLAC process. In case a HLC
charging session could be established, at least the MAC address is published via MQTT topic
TOPIC_V2G_MAC. The MAC address can be used by customers to implement an authentication
method for a basic AC PWM charging session. For this use-case the customer.json key
"ports[0]/user_authentication" must be configured to "mqtt" and the MQTT topic
TOPIC_AUTHORIZATION_STATUS needs to be published with payload '1' when the EV MAC
address is authorized for charging. If the customer wants to use this feature in combination with
an OCPP backend, then the key "ports[0]/user_authentication" must be configured to "ocpp", the
remaining OCPP client configuration must be valid and the OCPP client must be enabled. Then
the MAC address is passed to the OCPP backend according to the Autocharge standard (sends
"VID:<mac address>" as authorization token).

Please note that the MAC address is not reliably a static unique address and can be switched by
the EV dynamically ("randomized") after each charging session for privacy reasons. Especially in
this case, the usability with OCPP-based authentication is limited.

The SOC value can only be provided by the charging software when the EV starts a DIN 70121
or ISO 15118 DC charging session. The SOC is published only once at the beginning of the HLC
session over MQTT topic TOPIC_EV_PARAMETER_RESSSOC. While this topic is sent out not-
retained, a customer implementation cannot detect reliably when a new EV is connected and
whether its SOC could be read successfully. To address this, the MQTT topic
TOPIC_EV_SOC_ACTUAL was introduced which is sent out retained, see below for details.

During an on-going charging session, it is possible to try a re-init of the charging session. This is
not done automatically by the charging stack, but can be triggered by customer's software via
MQTT topic TOPIC_CHARGE_REINIT_SESSION. Please note, that this may not work with all
EVs. If supported and successfully carried out, then the MQTT topics
TOPIC_EV_PARAMETER_RESSSOC, TOPIC_EV_SOC_ACTUAL and
TOPIC_EV_SOC_TIMESTAMP are updated with the latest obtained values.

In an ISO 15118 AC charging session, i.e. in case the EV only supports ISO 15118 AC or prefers
ISO 15118 AC over DIN 70121, only the MAC address can be retrieved.

In case the EV is not reacting to the HLC trigger the charging software switches automatically,
after a 20 seconds SLAC timeout, to a basic AC PWM charging session.

Topic Name Topic Typ
e

Ret
ain

Range Comment

TOPIC_EV_PARAME
TER_RESSSOC

"port0/ci/ev/paramet
er/resssoc"

inte
ger

no 0-100 Topic which
provides the
EV´s state of
charge (SOC) of
the battery
(RESS -
Rechargeable
Energy Storage
System) in
percent. Will be
published at the
beginning of a
ISO15118 HLC
charging
session.

https://github.com/openfastchargingalliance/openfastchargingalliance/blob/master/autocharge-final.pdf

Charge Control C User Guide

 157

Protection Class: public

Topic Name Topic Typ
e

Ret
ain

Range Comment

TOPIC_V2G_MAC "port0/session/v2g_
mac"

stri
ng

no - Topic which
provides the hex
encoded MAC
address
(uppercase) of
the SLAC
process.
Example:
"00:12:34:56:78:
9A"

TOPIC_AUTHORIZAT
ION_STATUS

"port0/session/autho
rization_status"

inte
ger

yes 0-1 Topic which
must be
published by the
customer to
authorize an
user to charge in
case of
"ports[0]/user_au
thentication" is
set to "mqtt".
Valid payloads:0
= charging not
allowed,1 =
charging allowed
In case of a
session based
authorization the
topic should be
published as not
retained.
When OCPP is
selected as
authorization
method, then the
internal OCPP
client takes care
of this topic -
customer
software must
not publish it in
this case.

Charge Control C User Guide

 158

Protection Class: public

Topic Name Topic Typ
e

Ret
ain

Range Comment

TOPIC_EV_SOC_AC
TUAL

"port0/ci/ev/soc/actu
al"

inte
ger

yes -2-100 Topic which
provides the
EV´s state of
charge (SoC) in
percent, or the
following special
values:
-1 when EV is
not connected,
OR when EV is
connected, but
HLC
communication
did not yet made
progress to
charge
parameter phase
and thus the
values is not yet
known OR the
current setup
does not allow
the process to
reach the charge
parameter phase
(e.g. Tesla is
connected) OR
only basic
charging is
configured (see
charging_type)
-2: the charge
parameter phase
is passed, but
the value is still
unknown (e.g.
error...)
Implementation
notes:
It is reasonable
to pre-initialize a
variable which
holds the
received topic
value with -1
because this
signals that the
SoC is not yet, or
still unknown, or
that the charging
stack is
configured so
that the SoC
cannot be
determined at all.

Charge Control C User Guide

 159

Protection Class: public

Topic Name Topic Typ
e

Ret
ain

Range Comment

The iso15118d
will publish the
topic with value -
1 during bootup.
The iso15118d
will publish this
topic after the
charge
parameter phase
passed, either
with a valid SoC
value in percent
or with -2. The
iso15118d will
publish a value
of -1 when the
EV is unplugged.
The iso15118d
will publish the
topic with
updated SoC
value (or with -2)
in case of a re-
init request.

TOPIC_EV_SOC_TIM
ESTAMP

"port0/ci/ev/soc/time
stamp"

stri
ng

yes Timestamp
in RFC
3339
format,
e.g. "2023-
06-
23T06:54:
55.123Z"

The timestamp
when
TOPIC_EV_SOC
_ACTUAL was
updated last. In
case of a valid
SoC value in
TOPIC_EV_SOC
_ACTUAL, this
should be near
enough to the
actual readout
time.

https://www.rfc-editor.org/rfc/rfc3339
https://www.rfc-editor.org/rfc/rfc3339

Charge Control C User Guide

 160

Protection Class: public

Topic Name Topic Typ
e

Ret
ain

Range Comment

TOPIC_CHARGE_REI
NIT_SESSION

"port0/ci/charge/reini
t_session"

sig
nal

no - Trigger a re-init
of a fake DC
HLC session, i.e.
the current PWM
charging session
is terminated and
the EV is
instructed to go
into a HLC
phase again so
that a readout of
the SOC is
possible. After
this, a switch
back to a new
PWM charging
session is done.
Please note, that
not all EVs
support such a
switching
between HLC
and PWM
sessions.

Table 83 MQTT Topics for fake high level DC charging mode

15.22 Best practice

1. Check if the EV is plugged and new TCP connection is established (CP State ’B’ received
over topic TOPIC_CHARGE_CP_STATUS and TOPIC_CHARGE_TCP_STATUS with
"connected” (’1’))

2. Observe the CP States and the TCP connection status throughout the whole charging
session (See chapter Charge status information)

3. Use the status topics to indicate the current charging phase (See chapter Charge status
information)

4. Analyze the subscribed MQTT EV topics and handle the EVSE topics according to the
standard (ISO15118/DIN70121)

a. Initialization phase (TOPIC_CHARGE_INIT_STATUS with "started")

▪ Initialize the charging parameters over the MQTT topics before reaching
the corresponding phase. All parameters can be initialized after receiving
of the topic TOPIC_CHARGE_INIT_STATUS with "started". Depending
on the initialization process, the "INIT" parameter must be provided no
later than three seconds after "started". Alternatively, it is possible to use
the configuration file to initialize the charging parameters (See chapter
Basic SECC configuration)

▪ Check the selected protocol (TOPIC_CHARGE_INIT_PROTOCOL).
The ISO 15118 charging flow supports additional mechanisms like
renegotiation of charging parameter (See chapter Renegotiation
process) and resume of an old session (See chapter Pausing and
resuming of a charging session), and additional parameters to control
the charging session.

b. Authentication phase (TOPIC_CHARGE_AUTH_STATUS with "started”)

Charge Control C User Guide

 161

Protection Class: public

▪ If the authentication phase has finished on EVSE side, the EVSE-
Processing parameter of the "AUTH” phase needs to be set to "Finished”
(’0’).

▪ The authentication method depends on the provided list within the
TOPIC_EVSE_INIT_PAYMENTOPTIONS message. Only
"ExternalPayment” (’1’) is currently supported.

c. Charge parameter phase (TOPIC_CHARGE_PARAMETER_STATUS with
"started")

▪ If the charge parameter phase has finished on EVSE side, the EVSE-
Processing parameter of the “PARAMETER” phase needs to be set to
“Finished” ('0').

▪ If EVSE-Processing was set to “Finished” ('0') the connector has to be
locked on EV-side.

▪ In ISO15118 at least one SA-schedule must be sent over topic
TOPIC_EVSE_PARAMETER_SASCHEDULELIST. One schedule is
already predefined in the configuration file, but this one should be
adapted with valid data (See chapter Basic SECC configuration).

d. Charge phase (TOPIC_CHARGE_CHARGE_STATUS with “started”)

▪ The EVSE shall follow the requested EV target voltage and target current
under the conditions of the handled maximum and minimum limits.

▪ The topic TOPIC_EV_CHARGE_READYTOCHARGESTATE indicates
the current charge progress of the EV. If it is set to "Start" ('0') or "Stop"
('1') the EV requests to start or stop the energy flow, if is set to
"Renegotiate" ('2') the EV requests the renegotiation process. (Only
relevant for ISO15118. See chapter Renegotiation process)

5. Initiate a shutdown of the power electronic if the EV indicates stop charging (See
chapter Stop charging and error shutdown indication on EV side) or for EVSE emergency
reasons (See chapter Stop charging and error shutdown on EVSE side).

6. The charging session is terminated by receiving the topic
TOPIC_CHARGE_TCP_STATUS with "disconnected" ('0') and
TOPIC_CHARGE_CP_STATUS with CP State 'A'.

Charge Control C User Guide

 162

Protection Class: public

16 Order Information

Product Code

Product Code

Order Code

Order Code

Available order codes SW-Variant OCPP 1.6
included

Housing HW-Variant

I2CCSC-P00-105 PWM AC Charging no no housing 100

I2CCSC-A00-204 AC with ISO15118 yes no housing 200

I2CCSC-A00-274 AC with ISO15118 yes no housing 200

I2CCSC-A00-303 AC with ISO15118 yes no housing 300

Charge Control C User Guide

 163

Protection Class: public

17 Device Marking

Each device is marked with a label containing the following data:

1. Order Code

2. Serial Number

3. Production Data Code: WWYY

4. 2D DataMatrix code containing the following information as a list of space separated
values:

a. Order Code

b. MAC address Ethernet1 (only present for variant 200 and 300)

c. MAC address CP QCA70001 (only present for variant 200 and 300)

d. MAC address CP QCA7000 Linux interface1 (only present for variant 200 and
300)

e. MAC address mains QCA70001 (only present for variant 300)

f. MAC address mains QCA700 Linux interface1 (only present for variant 300)

g. DAK mains QCA7000 (only present for variant 300)

h. Serial Number2

i. Production Data Code

1: without colons or other delimiters

2: 10 digits, with leading zeros

An example is shown in figure Example Label for Charge Control C.

Figure 23 Example Label for Charge Control C

Charge Control C User Guide

 164

Protection Class: public

18 Certifications

Figure 24 Compatible with the back end system be.ENERGISED

Figure 25 Works with Vector vCharM

C

OCPP 1. 6

Charge Control C User Guide

 165

Protection Class: public

Figure 26 Certified by Gridware

Charge Control C User Guide

 166

Protection Class: public

19 Contact

chargebyte GmbH

Bitterfelder Straße 1-5

04129 Leipzig

Germany

Website: https://chargebyte.com

https://in-tech-smartcharging.com/

